
Math 25a Practice Final #1 Solutions

Problem 1. Suppose U and W are subspaces of V such that V = U ⊕W . Suppose also
that u1, . . . , um is a basis of U and w1, . . . , wn is a basis of W . Prove that

u1, . . . , um, w1, . . . , wn

is a basis of V .

Solution. The direct sum decomposition V = U ⊕W means that every vector v ∈ V can be
written uniquely as v = u + w for u ∈ U and w ∈ W . Expanding u and w in their relevant
bases shows that the union of the two bases span. To see that the two bases are linearly
independent, consider a putative dependence. It cannot involve vectors only from u∗ or w∗,
since this would restrict to give a linear dependence among two sets which are known to be
linearly independent. Consider v the linear combination of just the u∗ vectors, and consider
v′ the linear combination of just the w∗ vectors. This gives a nonunique expression of the
zero vector: 0 = v + v′ and 0 = 0 + 0. (ECP)

Problem 2. Suppose V is aK-vector-space which we do not assume to be finite-dimensional,
and let f : V → V be a linear map. Show that if ker f and im f are finite-dimensional then
so is V . (Warning: before using the Fundamental Theorem, think carefully about what
assumptions it uses.)

Solution. Assuming im f is finite dimensional, pick a basis v1, . . . , vn and preimages v′1, . . . , v
′
n ∈

V . We claim that span{v′1, . . . , v′n} + ker f is all of V (in fact, it is a direct sum), from
which it follows that V is finite dimensional (since dim ker f < ∞). To see spanning, take
v ∈ V and apply f : f(v) = k1v1 + . . . + knvn in the chosen basis for im f . Now consider
v′ = k1v

′
1 + . . . + knv

′
n. Because this has the same image as v under f , we must have

f(v − v′) = 0, or u := v − v′ ∈ ker f . This decomposes v as v = v′ + u. (ECP)

Problem 3. Let Jn be the n × n matrix with all entries equal to one. Calculate the
eigenvalues of Jn and the multiplicities of their eigenspaces.
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Solution. Let v be an eigenvector of Jn with coordinates (v1, . . . , vn). Then Jn(v) is the
vector with all coordinates equal to S =

∑
vi. Plugging this into the equation Jn(v) = λv,

we find S = λvi for every i.
Adding this up for all i, we find nS = λS. Now we have two cases. If S 6= 0, then we

find λ = n. Furthermore, all the vi are equal to S
n

, so it follows that all the vi are equal.
Therefore, the eigenspace has multiplicity 1, being spanned by the all-ones vector.

In the other case, we have S = 0 and therefore since S = λvi for every i, we must have
λ = 0. In this case, we can check that by definition of the all-ones matrix, any vector with
coordinates summing to 0 will be an eigenvector of Jn with eigenvalue 0. (RP)

Problem 4. Let V be an inner product space and suppose π : V → V is a projection
operator, so that π ◦ π = π. Then V = ker π ⊕ imπ. Prove that π is self adjoint if and only
if ker π and im π are orthogonal complements.

Solution. It is always true that ker π and im π are complements. If they are additionally
orthogonal, then we have

〈πv, v′〉 = 〈π(u+ w), u′ + w′〉 = 〈πw,w′〉 = 〈w, πw′〉 = 〈u+ w, π(u′ + w′)〉.

In the other direction, if π is self-adjoint, then 〈u,w〉 = 〈u, πv〉 = 〈πu, v〉 = 〈0, v〉 = 0.
(ECP)

Problem 5. Let V be an inner product space with dimV > 0.

1. Suppose that V is real. Show that the set of self-adjoint operators on V is a subspace
of L(V, V ), the vector space of linear maps V → V .

2. Suppose instead that V is complex. Show that the set of self-adjoint operators on V is
not a subspace of L(V, V ).

Solution. 1. If f = f ∗ and g = g∗, then (f + g)∗ = f ∗ + g∗ = f + g and (kf)∗ = kf ∗.

2. It’s not even closed under scalar multiplication. A self-adjoint operator can be ex-
pressed as a diagonal real matrix in some basis. Multiplying a nonzero such matrix by
the complex scalar i gives a diagonal purely imaginary matrix, whose eigenvalues are
now visibly non-real. (Alternatively, (if)∗ = if ∗ = −if ∗.) (ECP)

Problem 6. 1. State the complex spectral theorem.

2. Prove the complex spectral theorem. (You may assume that a complex operator on a
finite-dimensional space admits an upper-triangular presentation in some basis.)

Solution. 1. For V a finite-dimensional complex inner product space and f : V → V an
operator, f is normal if and only if f orthonormally diagonalizable.
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2. We have two directions to prove. In an orthonormal basis, the conjugate transpose
presents taking adjoints, and the conjugate transpose of a diagonal complex matrix
agrees with just the complex conjugate. Direct calculation shows that f and f ∗ com-
mute in this context. On the other hand, suppose that f is normal and select an
upper triangular presentation for f . Applying Gram-Schmidt to the basis ensures that
the basis is orthonormal with modifying the upper-triangularity of the presentation
of f . Now consider ‖fe1‖2 and ‖f ∗e1‖2, which are presented in terms of the matrix
coefficients of f as

‖fe1‖2 = |a11|2, ‖f ∗e1‖2 =
n∑
j=1

|a1j|2.

Since norms are nonpositive, this forces a1j = 0 for j > 1. Continuing down the rows
of f in this manner shows that f and f ∗ are, in fact, diagonal matrices. (ECP)

Problem 7. 1. Suppose V is a complex inner product space. Prove that every normal
operator on V has a square root.

2. Is the square root of a normal operator necessarily normal? Prove or give a counterex-
ample.

Solution. 1. Put a normal operator f into orthonormal diagonal form, and let g denote
the component-wise square root (in the same basis). Since f is diagonal, so is g, and
direct calculation shows gg = f .

2. Not necessarily. The positive operator 0 has a nontrivial non-normal square root:(
0 1
0 0

)
. (ECP)

Problem 8. Let A be a complex n× n matrix that has only one eigenvalue, λ1 = 4. Prove
that if the matrix S is such that A = SJS−1, and J is in Jordan Normal Form, then the
columns of S must be generalized eigenvectors of A.

Solution. Since λ1 is the unique eigenvalue, every vector must be a generalized eigenvector
for λ1. This includes all the columns of S.

Less cheekily, the generalized eigenspaces associated to an operator are independent of
change of basis. The columns of a matrix in Jordan normal form explicitly say which
eigenspace the Jordan basis vectors belong to, and S encodes a change of basis from some
fixed basis to a Jordan basis of generalized eigenvectors. (ECP)

Problem 9. Suppose V is a complex vector space of dimension n <∞, and let f : V → V be
an invertible linear operator. For p the characteristic polynomial of f and q the characteristic
polynomial of f−1, demonstrate the relation

q(z) =
1

p(0)
· zn · p

(
1

z

)
.
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Solution. Every v ∈ V which is a generalized eigenvector of weight λ 6= 0 for f also serves
as a generalized eigenvector of weight λ−1 for f−1, and hence G(λ, f) = G(λ−1, f−1).1 We
thus have

q(z) =
∏
λ

(z − λ−1)dimG(λ−1,f−1) = z−n
∏
λ

λ− dimG(λ−1,f−1)(λ− z−1)dimG(λ−1,f−1).

Recognizing the constant product as the constant term p(0) of p finishes the problem.
(ECP)

Problem 10. Given a complex vector space W , let WR denote its underlying real vector
space. Suppose V is a real vector space, and let VC be its complexification. Show (VC)R is
isomorphic to V ⊕ V .

Solution. Let v1, . . . , vn be a basis of V .
First, we will show that the set S = {v1, . . . , vn, i · v1, . . . , i · vn} is a basis of (VC)R.
By definition, any vector in (VC)R can be written in the form u + iv for u, v ∈ V . Since

{vj} is a basis, there exists real scalars aj, bj such that u =
∑n

j=1 ajvj, v =
∑n

j=1 bjvj. It
follows that u+ iv =

∑n
j=1 aj · vj + bj · (i · vj), so S spans (VC)R.

Now assume there exists real scalars aj, bj such that
∑n

j=1 aj ·vj+bj ·(i·vj) = 0. Looking at
the real and imaginary parts, we require

∑
ajvj = 0 and

∑
bjvj = 0. By linear independence

of the vj, all the aj, bj must equal 0 and therefore S is linearly independent as well.
Now define a map T : (VC)R → V ⊕ V satisfying T (vj) = (vj, 0) and T (i · vj) = (0, vj).

Since the vj are a basis of V , the pairs (vj, 0) and (0, vj) form a basis of V ⊕ V . Therefore,
we have immediately that T is surjective.

If T (u+ iv) = 0, then again write out u+ iv =
∑n

j=1 ajvj + bj(i · vj). By linearity of T ,
the left-hand side is equal to

∑n
j=1 ajT (vj) + bjT (i · vj) = (

∑n
j=1 ajvj,

∑n
j=1 bjvj) ∈ V ⊕ V .

By linear independence of the vj again, we have that this is equal to 0 iff aj, bj = 0 and so
u+ iv = 0. Therefore, T must be injective as well and therefore is an isomorphism. (RP)

Problem 11. Suppose V is an inner product space and that f, g : V → V are orthogonal
projections. Show tr(fg) ≥ 0.

Solution. Let u1, . . . , um form an orthonormal spanning set for im f and let w1, . . . , wn form
an orthonormal spanning set for im g. This expresses the two operators as

f(v) =
m∑
i=1

〈v, ui〉ui, g(v) =
n∑
j=1

〈v, wj〉wj.

1This doesn’t seem trivial to prove. The snappiest I can think of is to break f up into block diagonal
form with upper triangular blocks (i.e., the “canonical decomposition”), then notice (1) that inverting a
block diagonal matrix means inverting each individual block and (2) that inverting an upper triangular
matrix gives an upper triangular result with reciprocals on the diagonal, so this new inverted matrix is also
canonically decomposed.
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The composition is then

(fg)(v) =
m∑
i=1

〈
n∑
j=1

〈v, wj〉wj, ui

〉
ui

=
m∑
i=1

n∑
j=1

〈v, wj〉〈wj, ui〉ui.

Extending {ui} to a basis of V , the trace is then computed by the sum

tr(fg) =
∑
k

〈
m∑
i=1

n∑
j=1

〈uk, wj〉〈wj, ui〉ui, uk

〉

=
m∑
i=1

n∑
j=1

〈ui, wj〉〈wj, ui〉 =
m∑
i=1

n∑
j=1

|〈ui, wj〉|2. (ECP)

Problem 12. Suppose A is a block upper-triangular matrix

A =

A1 ∗
. . .

0 Am


where each Aj along the diagonal is a square matrix. Prove that

detA = (detA1) · · · (detAm)

Solution. Write nj for the sum of the sizes of the matrices A1, . . . , Aj. The main claim is
that in the permutation-sum formula expressing the determinant of A, if any of the elements
N ∈ (nj, nj+1] is sent below this range (i.e., potentially involving a term from the off-diagonal
part of the upper-triangular matrix), then some earlier M < N must be sent above its range
(i.e., into the zero part). Namely, let σ(N) be the image of an element N ∈ (nj, nj+1] with
σ(N) ≤ nj. Let k be the smallest index with nk ≥ σ(N), i.e., the vertical area of the matrix
where σ(N) wound up. Since rows are not allowed to be repeated in a permutation-sum, the
previous [1, nk] elements would be required to fit into [1, nk] \ {σ(N)} positions in order to
stay in the populated rows. This is not possible: there must be an M ≤ nk with σ(M) > nk.

This shows that the only nonvanishing terms in the permutation-sum are those where
the entries of A are pulled from the diagonal blocks. Factoring the leftovers appropriately
(i.e., into blocks) yields the above product formula. (ECP)

1



Math 25a Practice Final #2 Solutions

Problem 1. Suppose v1, . . ., vm is linearly independent in V and w ∈ V . Prove that

dim(Span{v1 + w, . . . , vm + w}) ≥ m− 1.

Solution. In the span, we can find the differences (vj+w)−(vm+w) = vj−vm. As 1 ≤ j < m
ranges, this produces m− 1 vectors. Suppose there were a dependence

k1(v1 − vm) + · · ·+ km−1(vm−1 − vm) = 0,

then we would have a dependence

k1v1 + · · ·+ km−1vm−1 − (k1 + · · ·+ km−1)vm = 0.

If k1 + · · ·+ km−1 is nonzero, we are at a contradiction: this original set of vectors does not
admit nontrivial linear dependencies. On the other hand, if it is zero, the remaining terms are
also known to form a linearly independent set, so they must all be zero themselves. (ECP)

Problem 2. Suppose two linear functionals ϕ1, ϕ2 : V → K have the same kernel. Show
that there exists a constant c with ϕ1 = cϕ2.

Solution. Select a preimage v1 of 1 along ϕ1: ϕ1(v1) = 1. We claim first that V = span{v1}⊕
kerϕ1 (and this is a special case of Problem #2 from the first practice exam). Since kerϕ1 =
kerϕ2 and v1 6∈ kerϕ1, it must be the case that ϕ2(v1) = c−1 gives a nonzero value c. This
gives comparable definitions of ϕ1 and ϕ2: they both send kerϕ1 = kerϕ2 to zero, and they
send the direct sum complement span{v1} to 1 and c−1 respectively. Since these definitions
are c–multiples of one another, we have ϕ1 = cϕ2. (ECP)

Problem 3. Suppose f : C3 → C3 is linear and that all the eigenvalues of f are 0. Prove
that f ◦ f ◦ f = 0.

Solution. Place f into upper-triangular form. Because all eigenvalues of f are zero, all the
diagonal entries of this form are zero too. Manually computing the cube of such a matrix
reveals it to be the zero matrix. (ECP)

2



Problem 4. Suppose v1, . . . , vm is a linearly independent list in V . Show that there exists
w ∈ V such that 〈w, vj〉 > 0 for every vj in the list.

Solution. Let U = span{v1, . . . , vm} be the subspace under consideration, and let e1, . . . , em ∈
U be an orthonormal list spanning it. The matrix M encoding the change of basis from v∗
to e∗ records their mutual inner products

M =

 〈v1, e1〉 · · · 〈vm, e1〉...
...

〈v1, em〉 · · · 〈vm, em〉

 ,

in the sense that M applied to the jth standard basis vector reveals the linear combination
coefficients expressing vj as a linear combination of the e∗ vectors. Because this is a change-
of-basis matrix, it is of full rank, and hence so is its conjugate-transpose M∗. For any positive
vector y (e.g., y = (1, 1, . . . , 1)), we can thus solve the equation M∗x = y. We claim that
the linear combination w of the e∗ vectors encoded by x solves the problem. Namely:

〈w, vj〉 = 〈x1e1 + · · ·+ xmem, vj〉
= x1〈e1, vj〉+ · · ·+ xm〈em, vj〉
= x1〈vj, e1〉+ · · ·+ xm〈vj, em〉 = yj = 1. (ECP)

Problem 5. Let f : V → V be a linear operator and let p be a polynomial. Show that
ker f ⊆ ker p(f) if and only if p has constant term equal to zero.

Solution. Suppose first that p has no constant term, and let v ∈ ker f be a kernel vector.
Then

p(f)(v) = (a1f + a2f
2 + · · ·+ anf

n)(v) = 0.

Alternatively, suppose that p does have a constant term, and let v ∈ ker f be any nonzero
kernel vector. Then

p(f)(v) = (a0 + a1f + · · ·+ anf
n)(v) = a0v 6= 0. (ECP)

Problem 6. Let f : V → V be an operator on a finite-dimensional inner product space.
Show that f is invertible if and only if there exists a unique linear isometry g : V → V with
f = g ◦

√
f ∗f .

Solution. Suppose first that f is invertible. The decomposition f = g ◦
√
f ∗f forces

√
f ∗f to

be invertible as well (so 0 cannot appear as a singular value of f). In that case, two putative
decompositions f = g ◦

√
f ∗f and f = g′ ◦

√
f ∗f can be rearranged to give f ◦ (

√
f ∗f)−1 = g

and f ◦ (
√
f ∗f)−1 = g′ respectively, so that g = g′. On the other hand, if f fails to be

invertible, then im f cannot span all of V . On the orthogonal complement, we can pick any
nontrivial isometry and extend by the identity on im f to get a total isometry g̃ : V → V
such that f = g ◦

√
f ∗f = g̃ ◦ g ◦

√
f ∗f for any initial polar decomposition. (ECP)
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Problem 7. Let V be a complex inner product space and let f : V → V be a linear isometry.

1. Prove that all eigenvalues of f have absolute value 1.

2. Prove that the determinant of f has absolute value 1.

3. Prove that g : V → V is a linear isometry if and only if for any orthonormal basis α∗
of V , g(α∗) is also an orthonormal basis.

Solution. 1. For v an eigenvector, the isometry equation ‖v‖ = ‖fv‖ = |λ|‖v‖ forces
|λ| = 1.

2. The determinant of f is the product of the eigenvalues:

| det f | =

∣∣∣∣∣∏
j

λj

∣∣∣∣∣ =
∏
j

|λj| = 1.

3. Beginning with a vector v, normalize it to α1 = v/‖v‖ and extend to an orthonormal
basis α∗. Then g(α∗) is again orthonormal, and in particular ‖g(α1)‖ = 1. We have
therefore calculated

‖g(v)‖ = ‖g(‖v‖ · α1)‖ = ‖‖v‖ · g(α1)‖ = ‖v‖.

Instead suppose that g has the isometry property, and let α∗ be some orthonormal
basis. Because ‖α∗‖ = ‖g(α∗)‖, we see immediately that g carries α∗ to a set of unit
vectors. We also learned on the homework that the norm determines the inner product,
hence if g is a linear map preserving the norm, it must also preserve the inner product.
It follows that g(α∗) is an orthonormal set. (ECP)

Problem 8. Suppose f : C6 → C6 is a linear operator such that. . .

• . . . its minimal polynomial is (z − 1)(z − 2)2.

• . . . its characteristic polynomial is (z − 1)2(z − 2)4.

Describe the possible presentations of f as a matrix in a Jordan basis.

Solution. The characteristic polynomial alone determines the following forms for the matrix:
1 ? 0 0 0 0
0 1 0 0 0 0
0 0 2 ? 0 0
0 0 0 2 ? 0
0 0 0 0 2 ?
0 0 0 0 0 2

 .
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The minimal polynomial carries two pieces of information: the exponents simultaneously
determine the size of the largest Jordan block and assert the existence of at least one Jordan
block of exactly that size. This reduces the possibilities to

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 ?
0 0 0 0 0 2

 ,

where the remaining “?” is either a 0 or a 1. (ECP)

Problem 9. Suppose V is a finite-dimensional complex vector space with an operator f ,
and let V1, . . . , Vm be nonzero invariant subspaces decomposing V as

V = V1 ⊕ · · · ⊕ Vm.

For each j, let pj denote the characteristic polynomial of fj = f |Vj and let qj denote the
minimal polynomial of fj.

1. Show that the characteristic polynomial of f is the product p1 · · · pm.

2. Show that the minimal polynomial of f is the least common multiple of q1, . . . , qm.

Solution. 1. Find basis vj,∗ for each Vj presenting f as an upper-triangular matrix. The
characteristic polynomial for f (resp., fj) is given by the product of the monic linear
factors with a root at each diagonal entry of the whole matrix (resp., the part governed
by fj). These parts assemble into the whole, as claimed.

2. The least common multiple is computed to be

lcm(z) =
∏
λ

(z − λ)minj{dimG(λ,fj)}.

This polynomial is a monic polynomial such that lcm(f) kills all of V : any vector
in V decomposes as a sum of vectors in Vj, and on each Vj the polynomial lcm(z)
is divisible by pj, hence it kills v. On the other hand, suppose it were not minimal:
since it has the same roots as p(z), it must be the case that one of the exponents in
the factorization of p(z) is lower than the corresponding exponent present in lcm(z).
Suppose that Vj determined that exponent and that λ is the relevant eigenvalue. Since
p(f) kills all of V , it must also kill all of Vj, and in particular all of G(λ, fj). This
cannot be the case, as pj was already selected to be the minimal-degree polynomial
killing this subspace. (ECP)

Problem 10. Suppose V is a finite-dimensional real vector space and f : V → V is an
operator on V satisfying f 2 + bf + c = 0 for some b, c ∈ R. Show that f has an eigenvalue
if and only if b2 ≥ 4c.
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Solution. The condition b2 ≥ 4c is exactly the condition that there exist r, s ∈ R such that
x2 + bx + c = (x − r)(x − s). Since (f − r)(f − s) = 0, it must be the case that at least
one of the two factors has nontrivial kernel, and any member of either kernel witnesses an
eigenvector of f . Conversely, if f has an eigenvector v satisfying fv = r · v for some r ∈ R,
then x − r must cleanly divide the minimal polynomial of f . Since x2 + bx + c is a monic
polynomial killing f , it is divided by the minimal polynomial, and chaining these together
shows that x − r is a factor of x2 + bx + c. Hence, x2 + bx + c = (x − r)(x − s) for some
other s ∈ R, which shows b2 ≥ 4c. (ECP)

Problem 11. Let V be an inner product space, and fix vectors u,w ∈ V . Define f : V → V
by the formula

f(v) = 〈v, u〉 · w.
Calculate tr f .

Solution. Remembering the slogan “the trace is a linearized dimension function,” we seek
to make f look as much like a sum of projections as possible. Begin by extending u to an
orthogonal basis (u, u2, u3, . . . , un) of V . We can thus decompose w as

w = ku+ k2u2 + k3u3 + · · ·+ knun,

which gives
f(v) = 〈v, u〉 · (ku+ k2u2 + k3u3 + · · ·+ knun).

We calculate the trace by

tr f =
∑
j

〈f(uj), uj〉
‖uj‖2

=
∑
j

〈〈uj, u〉 · w, uj〉
‖uj‖2

=
〈〈u, u〉 · (ku+ k2u2 + · · ·+ knun), u〉

‖u‖2

= k‖u‖2 =
〈w, u〉
‖u‖2

‖u‖2 = 〈w, u〉. (ECP)

Problem 12. Let V be a vector space with basis v0, . . . , vn and let a0, . . . , an be scalars.
Define a linear map f on V by its action on a basis f(vi) = vi+1 and f(vn) = a0v0 + a1v1 +
. . .+ anvn. Determine the matrix of f with respect to the given basis, and the characteristic
polynomial of f .

Solution. The matrix has 1s on the sub-diagonal, the column vector (a0, . . . , an) in the final
column, and 0s otherwise. Beginning with the vector v0, the list (v0, fv0, f

2v0, . . . , f
nv0)

is linearly independent, forcing the degree of the minimal polynomial up to at least n + 1.
Hence, the minimal and characteristic polynomials agree. The polynomial

p(x) = xn+1 − anxn − an−1xn−1 − · · · − a1x− a0
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kills v0 by direct computation. Additionally, the other basis vectors vj = f jv0 are also killed
by this polynomial:

p(f)(vj) = p(f)(f jv0) = f j(p(f)(v0)) = f j(0) = 0.

It follows that p is the minimal polynomial, since it is monic, p(f) kills V , and p is of the
right degree. Since it is the minimal polynomial, we have already concluded that it is also
automatically the characteristic polynomial. (ECP)
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Math 25a Final Exam Solutions

Problem 1. Suppose we have a K-vector space V of dimension at least 3, as well as distinct
vectors u, v ∈ V . Prove that {u, v} is linearly independent if and only if for some w 6∈
span{u, v} the set {u+ v, u+ w, v + w} is linearly independent.

Solution. We start by showing that {u+v, u+w, v+w} has the same span as {u, v, w}. One
direction is done for us, since every vector in the first list is a linear combination of vectors in
the second list. In reverse, note that we can construct the difference (u+w)−(v+w) = u−v,
and hence the sums (u+ v) + (u− v) = 2u and (u+ v)− (u− v) = 2v. Halving these shows
we can construct u and v as linear combinations of vectors in the second list. Once we have
v, we can finally form the difference (v + w) − v = w, and hence the two lists have the
same span. Since w is chosen to be linearly independent of u and v, the first list is linearly
independent if and only if the list {u, v} is. Chaining these together, we have that the second
list is linearly independent if and only if the first list is linearly independent if and only if
the list {u, v} is linearly independent. (ECP)

Problem 2. Consider the block matrix

M =

(
A B
0 C

)
for auxiliary matrices A, B, and C. Show the inequality

rankA+ rankC ≤ rankM ≤ rankA+ rankB + rankC.

Solution. Block matrices encode linear transformations between vectors spaces with direct
sum decompositions. Suppose M represents a map V → W , decompose V and W as
V = V1 ⊕ V2 and W = W1 ⊕W2, and denote the induced maps by

A : V1 → W1, B : V1 → W2, C : V2 → W2.

The second inequality is easier to establish. We have imM ⊆ im(A ⊕ 0) + im(B ⊕ 0) +
im(0⊕C), which induces an inequality on dimensions. The sum of subspaces in turn has its
dimension bounded by the sum of the dimensions:

dim imM ≤ dim(im(A⊕ 0) + im(B ⊕ 0) + im(0⊕ C)) ≤ dim imA+ dim imB + dim imC.
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To establish the second inequality, consider n = rankA many input vectors v1, . . . , vn ∈ V
such that A(v∗) are linearly independent, and consider m = rankC many input vectors
v′1, . . . , v

′
m ∈ V such that C(v′∗) are linearly independent. We claim that these are still

linearly independent under M . A dependence gives

0 = k1Mv1 + · · ·+ knMvn + k′1Mv′1 + · · ·+ k′mMv′m,

which we can arrange into W1 and W2 components as

=

W1 component︷ ︸︸ ︷
(k1Av1 + · · ·+ knAvn + k′1Bv

′
1 + · · ·+ k′mBv

′
m) +

W2 component︷ ︸︸ ︷
(k′1Cv

′
1 + · · ·+ k′mCv

′
m).

Since the decomposition W = W1⊕W2 is direct and Cv′1, . . . , Cv
′
m are linearly independent,

it must be the case that k′1 = · · · = k′m = 0. Putting that information back into the
W1 component, the coefficients k1, . . . , kn must also be zero. Hence, we have a linearly
independent set of length rankA + rankC inside of imM , bounding its dimension from
below. (ECP)

Problem 3. Recall that for an operator f : V → V with kernel U ⊂ V , we defined an
induced operator f/U : V/U → V/U sending v + U to f(v) + U .

Assume f is diagonalizable and V is finite-dimensional. Show that λ is an eigenvalue of
f/U if and only if λ 6= 0 and λ is an eigenvalue of f .

Solution. Assume that λ is a nonzero eigenvalue of f with eigenvector v. Then by definition
of f/U , we have f/U(v + U) = f(v) + U = λv + U = λ(v + U), so v + U is an eigenvector
of f/U with eigenvalue λ.

Let k be the dimension of the kernel U and let n be the dimension of V . Since f is
diagonalizable, it exhibits a basis of eigenvectors v1, . . . , vn where we assume v1, . . . , vk span
U .

Then the vectors vk+1 + U, . . . , vn + U by the above reasoning are eigenvectors in V/U .
Furthermore, no linear combination of vk+1, . . . , vn can be in U since they are linearly inde-
pendent and none of the vk+1, . . . , vn are in U themselves.

However, the dimension of the quotient is n−k. Therefore, the vk+1 +U, . . . , vn+U form
a basis of eigenvectors of f/U . Any eigenvalue of f/U therefore must be an eigenvalue of
one of the vi +U . By definition, this means that the eigenvalue is both nonzero and also an
eigenvalue of f as desired. (RP)

Problem 4. 1. Show that 〈A,B〉 := tr(AB) is an inner product on the space of n × n
real symmetric matrices (or, equivalently, on the space of real self-adjoint operators on
Rn).

2. What is the dimension of the subspace W of such matrices additionally satisfying
tr(A) = 0? What is the dimension of W⊥ relative to the above inner product?
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Solution. 1. Inner products are positive-definite skew-symmetric pairings. To check skew-
symmetry, we have

〈A,B〉 = tr(AB) = tr(BA) = 〈B,A〉 ,

using the cyclic permutation property of trace. To see positive-definiteness, we know
that trace is basis-invariant and that a real symmetric matrix A admits a diagonal
presentation D, and hence

〈A,A〉 = tr(AA) = tr(DD) = tr

 λ21
. . .

λ2n

 =
∑
j

λ2j .

This sum of nonnegative numbers is nonnegative, and it is positive exactly when A is
not the zero matrix.

2. Write V for the space of such matrices. Since trace is a linear map tr : V → R, we have
dimV = dim im tr + dim ker tr. There are two options for dim im tr, since im tr ⊆ R,
and it must be the case that dim im tr = 1 since there exist matrices with nonzero trace
(i.e., trace is not just the zero functions). To determine dimV , note that a symmetric
real matrix is determined by its upper-triangular portion (on which there is no further

restriction), so that dimV = n(n+1)
2

. It follows that W = ker tr has dimension n(n+1)
2
−1.

Finally, the perpendicular to any subspace is a complement, hence dimW +dimW⊥ =

dimV , so that dimW⊥ = dimV − dimW = n(n+1)
2
−
(
n(n+1)

2
− 1
)

= 1. (ECP)

Problem 5. 1. Suppose that u, v ∈ V are vectors with 〈u, v〉 real. Show that 〈u+ v, u− v〉 =
‖u‖2 − ‖v‖2.

2. Suppose u and v additionally satisfy ‖u‖2 = ‖v‖2 = 〈u, v〉 = c ∈ R. Prove that u = v.

Solution. 1. Just compute:

〈u+ v, u− v〉 = 〈u, u〉 − 〈v, v〉+ 〈v, u〉 − 〈u, v〉 = ‖u‖2 − ‖v‖2 + 〈v, u〉 − 〈v, u〉.

The final two terms cancel in the case that 〈u, v〉 is real.

2. Showing u = v is the same as showing u − v = 0, which is the same as showing
‖u− v‖2 = 0. Again, we compute:

‖u− v‖2 = 〈u− v, u− v〉 = 〈u, u〉+ 〈v, v〉 − 〈u, v〉 − 〈v, u〉 = c+ c− c− c = 0. (ECP)

Problem 6. Let V and W be finite dimensional real inner product spaces.

1. Define what it means for an operator f : V → V to be positive.

2. For any linear map f : V → W , show that f ∗f : V → V and ff ∗ : W → W are
positive operators on V and W respectively.

10



3. Polar decomposition states that any operator f : V → V factors as a positive operator
followed by a linear isometry. Show that this positive operator must be

√
f ∗f .

Solution. 1. The operator f is positive when f is self-adjoint and 〈fv, v〉 ≥ 0 for all v ∈ V .

2. To see f ∗f is self-adjoint, calculate (f ∗f)∗ = f ∗f ∗∗ = f ∗f . To see the inequality,
calculate 〈f ∗fv, v〉 = 〈fv, fv〉 = ‖fv‖2 ≥ 0. The other case is similar.

3. Let f = gp be some putative polar decomposition. We calculate f ∗ = (gp)∗ = p∗g∗ =
p∗g−1 using the fact that g is an isometry in the last step. Composing this with f gives
f ∗f = (p∗g−1)(gp) = p∗p. Both the right- and left-hand sides are positive operators,
positive operators have unique positive square roots, and p is a square root of p∗p, so√
f ∗f =

√
p∗p = p. (ECP)

Problem 7. Let V be a complex inner product space and let f : V → V be an operator
satisfying f ∗ = −f . We call such an operator skew-self-adjoint.

1. Show that the eigenvalues of f are purely imaginary.

2. Show further that V decomposes as the orthogonal direct sum

V =
⊕
λ∈R

Eiλ(f).

Solution. 1. Suppose v is an eigenvector with eigenvalue λ. Then we calculate

λ‖v‖2 = 〈fv, v〉 = 〈v, f ∗v〉 = 〈v,−fv〉 = 〈v,−λv〉 = −λ‖v‖2.

This is only satisfiable for λ = a+ bi if a = 0.

2. The skew-self-adjointness condition guarantees normality:

ff ∗ = f(−f) = −ff = (−f)f = f ∗f.

As consequence, the complex spectral theorem states that V admits an orthonormal
basis of eigenvectors for f . Since the eigenvalues of f are all purely imaginary, it
follows immediately that V decomposes (using any of these orthonormal bases) into
an orthogonal direct sum of eigenspaces of purely imaginary weight. (ECP)

Problem 8. Consider the matrix M described by

M =

 1 2 0
0 1 3
0 0 1

 .

Calculate a square root of M .
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Solution. Since N = I −M is nilpotent of order 2, we must compute the Maclaurin series
for
√

1 + x out to second order:

T2(
√

1 + x) = 1 +
1

2
x− 1

4
x2.

By calculating

N2 =

 0 0 6
0 0 0
0 0 0

 ,

we use this formula to compute

√
M =

√
I +N = I +

1

2
N − 1

8
N2 =

 1 1 −3/4
0 1 3/2
0 0 1

 .

You can prove that this answer works by making a generic argument about Taylor series
and polynomial multiplication, or you can check outright that its square returns M again.

(ECP)

Problem 9. Suppose f : V → V is an operator on a finite-dimensional complex vector
space, and let v ∈ V be a fixed vector.

1. Show that there exists a unique monic polynomial p of smallest degree such that
p(f)(v) = 0.

2. Prove that p divides the minimal polynomial of f .

Solution. 1. Consider the set of monic polynomials p satisfying this vanishing condition
p(f)(v) = 0. This set is nonempty: the list (v, fv, . . . , fdimV v) is of length larger than
the dimension of V , hence has a linear dependence, from which we can extract such a
polynomial. We can select some polynomial of smallest degree from this set. To see
that this choice is unique, if there were two distinct polynomials of smallest degree with
this condition, then their difference (divided by its leading nonzero coefficient) would
be another monic polynomial of smaller degree satisfying the vanishing condition—a
contradiction.

2. Polynomial division guarantees the existence of polynomials q and r such that minpoly =
p · q + r, where deg r < deg p. Since minpoly(f) = 0 it also vanishes on v, and
p(f)(v) = 0 by assumption, which forces r(f)(v) = 0 as well. This is only possible if
r = 0 is the zero polynomial, lest the bound on its degree contradict our minimality
assumption on p. The statement r = 0 is identical to the statement that p cleanly
divides the minimal polynomial. (ECP)

Problem 10. Suppose g : R3 → R3 is a linear isometry. Prove that there exists a nonzero
vector v ∈ R3 such that g2(v) = v.
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Solution. Because g is an operator on an odd–dimensional real vector space, it is guarateed
to admit an eigenvector v of weight λ ∈ R. The isometry condition applied to g(v) gives

‖v‖ = ‖gv‖ = ‖λv‖ = |λ| · ‖v‖.

The only λ satisfying this equation are 1 and −1. In either case, gg(v) = λ2v = v works.
(ECP)

Problem 11. Suppose V is a finite-dimensional real vector space and f : V → V is an
operator with tr f 2 < 0. Show that f does not admit an upper-triangular presentation.

Solution. Suppose instead that f did admit an upper-triangular presentation. The product
of two upper-triangular matrices behaves like component-wise multiplication on the main
diagonal, and hence the diagonal of the square of an upper-triangular matrix is the square of
the diagonal of the matrix. For (λj) the components of an upper-triangular presentation of
f , we thus have tr f 2 =

∑
j λ

2
j . This sum is nonnegative, demonstrating the contrapositive

of the claim. (ECP)

Problem 12. Suppose V is a complex inner product space and T : V → V is a linear
operator. Let λ1, . . . , λn be the eigenvalues of T , repeated according to multiplicity. Supposea1,1 . . . a1,n

...
...

an,1 . . . an,n


is the matrix of T with respect to some orthonormal basis of V . Prove that

|λ1|2 + . . .+ |λn|2 ≤
n∑
k=1

n∑
j=1

|aj,k|2

with equality when T is normal.

Solution. There is a trick from the homework that is useful here:

tr(T ∗T ) =
n∑
k=1

n∑
j=1

|aj,k|2

for a matrix presentation of T in an orthonormal basis as given above. Meanwhile, we also
know that trace is independent of choice of basis, so this agrees with the same formula
computed in any other basis. Because we are working in a complex inner product space, we
know (by Schur’s theorem) that we can find an orthonormal basis in which T presents as an
upper-triangular matrix with its eigenvalues appearing on the main diagonal. We thus have

n∑
k=1

n∑
j=1

|aj,k|2 =
n∑
j=1

|λj|2 + (squares of other matrix entries in the upper triangular-form)

≥
n∑
j=1

|λj|2.
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In the case that T is normal, the upper-triangular presentation is actually diagonal, hence
the omitted term in the intermediate expression is zero, hence the inequality is an equality.

(ECP)
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