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1 For submission to Thayer Anderson

Problem 1.1. Prove there does not exist an operator f : R7 → R7 such that f2 + f + 1 is nilpotent.

Solution. Such an operator would have its characteristic polynomial dividing (f2 +f + 1)N for some N � 0.
However, (f2 + f + 1) = (f − α)(f − α) has only two complex-conjugate roots, which must appear in equal
powers in the characteristic polynomial. At the same time, the characteristic polynomial must have total
degree equal to the dimension of the space: 7. These contradict. (ECP)

Problem 1.2. Suppose V is a real vector space and f : V → V is an operator. Suppose there exist b, c ∈ R
such that f2 + bf + c = 0. Prove that f has an eigenvalue if and only if b2 ≥ 4c.

Solution. This proof is similar. Such an operator has minimal polynomial dividing (f2 +bf+c)N for N � 0,
but since (f2 + bf + c) has two complex roots, the minimal polynomial must also have at most those two
roots. If b2 ≥ 4c, then these two roots are real, and at least one of them induces (via the minimal polynomial)
an eigenvalue of f . On the other hand, if f has no eigenvalues, then its minimal polynomial can have no
real roots, forcing b2 < 4c. (ECP)

Problem 1.3. Suppose V is a finite-dimensional real vector space and f : V → V is a linear operator. Show
that the following are equivalent:

1. All the eigenvalues of fC are real.

2. There exists a basis of V with respect to which f has an upper-triangular matrix.

3. There exists a basis of V consisting of generalized eigenvectors of f .

Solution. We address this in parts.

2. =⇒ 1. The eigenvalues of fC are read off of the main diagonal of any upper-triangular matrix presentation of
it. Our assumption is that f admits an upper-triangular real presentation, which complexifies to an
upper-triangular presentation of fC with all real entries. In particular, its main diagonal consists of
real numbers.

3. =⇒ 2. If V has a basis of generalized eigenvectors, then V is exhausted by its generalized eigenspaces:

V =
⊕
λ∈R

G(λ, f).

From here, the same proof as in the complex case works: form a new basis of V by forming bases for
ker(f − λ)◦1, extending that to bases for ker(f − λ)◦2, . . . , on up to bases for ker(f − λ)◦n.

1. =⇒ 3. Start by forming a generalized eigenbasis for fC: (uj + ivj)
n
j=1. The collection (u1, . . . , un, v1, . . . , vn)

forms a spanning set for V , and it can thus be reduced to a basis for V . We claim that each of these
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vectors is a generalized eigenvector: by assumption we have (fC − λj)◦n(uj + ivj) = 0, which expands
via the definition of complexification to

(f − λj)◦n(uj) + i(f − λj)◦n(vj) = 0 + i0,

and examining this equation component-wise yields the desired result. (ECP)

Problem 1.4. Throughout, let V denote a real vector space with an operator f : V → V .

1. Suppose f has no eigenvalues. Conclude that det f > 0.

2. Suppose dimV is even and that det f < 0. Show f has at least two distinct eigenvalues.

Solution. 1. The determinant of f agrees with the determinant of its complexification fC. The determi-
nant of the complexification is the product of its eigenvalues (repeated according to algebraic multi-
plicity), which must all be non-real complex numbers occuring in conjugate pairs. Enumerating these
as λ1, λ1, λ2, λ2, . . . , λk, λk, we thus have

det f = det fC =
∏
j

λj · λj =
∏
j

|λj |2.

Finally, the product of positive numbers is positive.

2. Again, any complex eigenvalues of the complexification of f must come in conjugate pairs, the product
of which gives a positive number. If det f < 0, there must be some negative real number in the
product. If the entire product were accounted for by conjugate pairs and a lone negative number, then
the quantity of numbers (and hence the degree of the characteristic polynomial) would be odd, so there
must be other real numbers also contributing to the product. (ECP)

2 For submission to Davis Lazowski

Problem 2.1. Give an example of an operator on a finite-dimensional real inner product space that admits
an invariant subspace whose orthogonal complement is not invariant.

Solution. Any non-orthogonal projection will work.
Let V = R2, and let p : V → V be the projection

p(x, y) = (0, x+ y)

Then im p = 〈(0, 1)〉, and 〈(1, 0)〉 = 〈(0, 1)〉⊥, but p(1, 0) = (0, 1). (DL)

Problem 2.2. Let e1, . . . , en be an orthonormal basis for an inner product space V , and let f : V → V be
any linear operator. Show that the sum

‖fe1‖2 + · · ·+ ‖fen‖2

is independent of the choice of basis.

Solution. We can expand the sum as:

n∑
j=1

〈fej , fej〉 =

n∑
j=1

〈f∗fej , ej〉

=

n∑
j=1

〈f∗fej , ej〉
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f∗f is positive, so diagonalisable, so has an orthornormal diagonal basis ξ1...ξn. We can expand the ej
in terms of it:

ej =

n∑
i=1

αijξi

Therefore

n∑
j=1

〈f∗fej , ej〉

=

n∑
j=1

n∑
i=1

〈f∗fαijξi, ej〉

=

n∑
j=1

n∑
i=1

λiαij 〈ξi, ej〉

=

n∑
j=1

n∑
i=1

λi|αij |2 〈ξi, ξi〉

=

n∑
j=1

n∑
i=1

λi|αij |2

But because ξi is normal,
∑n
j=1 |αij |2 = 1. So this sum simplifies to

=

n∑
i=1

λi

Which is dependent only on f∗f and independent of basis. (DL)

Problem 2.3. Let V be an inner product space, and consider the vector space L(V, V ) of operators on V .
Show that

〈f, g〉 = tr(f ◦ g∗)
defines an inner product on L(V, V ).

Solution. • Positive definite: f ◦ f∗ is a positive operator, so has positive eigenvalues and can be diag-
onalised, so tr(f ◦ f∗) ≥ 0. If and only if all the eigenvalues are zero is their sum zero, in which case
f = 0, as required.

• Linear in first term:

〈f + λh, g〉
= tr([f + λh] ◦ g∗)

= tr(f ◦ g∗ + λh ◦ g∗)

= tr(f ◦ g∗) + λtr(h ◦ g∗)

Where tr is linear because [A+λB]i,j = [A]i,j +λ[B]i,j , and tr is the sum of matrix diagonal elements.

• Conjugation swaps elements: Clearly, tr(AT) = tr(A) because transposition leaves the diagonal in-
variant. Also, tr(A) = tr(A) because conjugation is applied to each matrix diagonal element, and
a+ b = a+ b.Since (f ◦ g∗)T = (g ◦ fT ) = g ◦ f∗, then tr(f ◦ g∗) = tr(g ◦ f∗), so done. (DL)

Problem 2.4. Suppose V is a real vector space and that J : V → V is a real linear operator satisfying
J2 = −1. Define complex scalar multiplication on V as follows: for a, b ∈ R, set

(a+ bi)v = av + bJv.
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1. Show that this complex scalar multiplication and V ’s usual addition makes V into a complex vector
space.

2. Show that the dimension of V as a complex vector space is half the dimension of V as a real vector
space.

Solution. 1. • Additive axioms: inherited from the underlying real vector space.

• Multiplicative axioms: Clearly 0x = 0 and 1x = x; these are inherited from the underlying real
vector space. Also, (ab)v = a(bv) because

[(a+ bi)(c+ di)]v = [(ac− bd) + (ad+ bc)i]v = (ac− bd)v + (ad+ bc)Jv

(a+ bi)[(c+ di)v] = (a+ bi)[cv + dJv] = a(cv + dJv) + bJ(cv + dJv)

= (ac)v + (ad)Jv + (bc)Jv − (bd)v = (ac− bd)v + (ad+ bc)Jv

Where we use associativity and commuativity in the underlying real vector space freely.

• Distributive axions:

(a+ bi)(v + u) = a(v + u) + bJ(v + u)

= (a+ bJ)v + (a+ bJ)u = (a+ bi)v + (a+ bi)u

[(a+ bi) + (c+ di)]v = [(a+ c) + (b+ d)i]v

= (a+ c)v + (b+ d)Jv = (a+ bJ)v + (c+ dJ)v = (a+ bi)v + (c+ di)v

As required.

2. The set {v, Jv} is linearly independent in the underlying real vector space. If Jv = λv, then λ2 = −1,
which is a contradiction.

Construct a basis of the real vector space as follows: choose v0 ∈ V . Then 〈{v0, Jv0}〉 = U0 as a
two-dimensional subspace invariant under J , because J(αv0 + βJv0) = αJv0 − βv0. Choose v1 6∈ U0.
Let U1 = U0 + 〈{v1, Jv1}〉 to construct a four-dimensional subspace, and repeat. In this way, construct
a basis v0, Jv0, v1, Jv1....vn/2−1, Jvn/2−1.

Since this list spans the real vector space, it also spans the complex vector space. But iv0 = Jv0, so
the list v0, v1...vn/2−1 also spans the complex vector space.

Also, all these vectors are linearly independent.

Suppose
(α0 + iβ0)v0 + ...+ (αn/2−1 + iβn/2−1)vn/2−1 = 0

Then in the real vector space

α0v0 + ...+ αn/2−1vn/2−1 + β0Jv0 + ...+ βn/2−1Jvn/2−1 = 0

Since the set (v0, Jv0...) is linearly independent in the real vector space, then αj = βj = 0 for all j.
Therefore v0...vn/2−1 is linearly independent and spanning in the complex vector space, so is a basis,
so the complex vector space has dimension n/2. (DL)

3 For submission to Handong Park

Problem 3.1. Suppose V is a real vector space and f : V → V has no eigenvalues. Show that every
invariant subspace has even dimension.

Solution. If f has an invariant subspace U of odd dimension, we could restrict attention to f |U , which is
then a real operator on an odd-dimensional space and hence has an eigenvalue. A witnessing eigenvector v
is also an eigenvector of f of the same weight. (ECP)
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Problem 3.2. Suppose that V is a real inner product space and that f : V → V is self-adjoint.

1. Show that VC is a complex inner product space with inner product

〈u+ iv, x+ iy〉C = 〈u, x〉+ 〈v, y〉+ (〈v, x〉 − 〈u, y〉)i.

2. Show that fC is a self-adjoint operator on the inner product space VC.

3. Use complexification (and the previous two parts) to conclude the real spectral theorem (for self-adjoint
real operators) from the complex spectral theorem (for normal complex operators).

Solution. 1. We need to check the axioms: left linearity, right quasi-linearity, conjugate symmetry, and
positive-definiteness.

Linearity:

〈u+ iv + u′ + iv′, x+ iy〉C = 〈(u+ u′) + i(v + v′), x+ iy〉C
= 〈u+ u′, x〉+ 〈v + v′, y〉+ (〈v + v′, x〉 − 〈u+ u′, y〉)i
= 〈u, x〉+ 〈v, y〉+ (〈v, x〉 − 〈u, y〉)i+ 〈u′, x〉+ 〈v′, y〉+ (〈v′, x〉 − 〈u′, y〉)i
= 〈u+ iv, x+ iy〉C + 〈u′ + iv′, x+ iy〉C,

and

〈(a+ bi)(u+ iv), x+ iy〉C = 〈(au− bv) + i(av + bu), x+ iy〉C
= 〈au− bv, x〉+ 〈av + bu, y〉+ (〈av + bu, x〉 − 〈au− bv, y〉)i
= a〈u, x〉 − b〈v, x〉+ a〈v, y〉+ b〈u, y〉+ (a〈v, x〉+ b〈u, x〉 − a〈u, y〉+ b〈v, y〉)i
= (a+ bi)(〈u, x〉+ 〈v, y〉+ (〈v, x〉 − 〈u, y〉)i)
= (a+ bi)〈u+ iv, x+ iy〉C.

Quasi-linearity:

〈u+ iv, x+ iy + x′ + iy′〉C = 〈u+ iv, (x+ x′) + i(y + y′)〉C
= 〈u, x+ x′〉+ 〈v, y + y′〉+ (〈v, x+ x′〉 − 〈u, y + y′〉)i
= 〈u, x〉+ 〈v, y〉+ (〈v, x〉 − 〈u, y〉)i+ 〈u, x′〉+ 〈v, y′〉+ (〈v, x′〉 − 〈u, y′〉)i
= 〈u+ iv, x+ iy〉C + 〈u+ iv, x′ + iy′〉C,

and

〈u+ iv, (a+ ib)(x+ iy)〉C = 〈u+ iv, (ax− by) + i(bx+ ay)〉C
= 〈u, ax− by〉+ 〈v, bx+ ay〉+ (〈v, ax− by〉 − 〈u, bx+ ay〉)i
= a〈u, x〉+ b〈v, x〉 − b〈u, y〉+ a〈v, y〉+ (a〈v, x〉 − b〈u, x〉 − b〈v, y〉 − a〈u, y〉)i
= (a− bi)(〈u, x〉+ 〈v, y〉+ (〈v, x〉 − 〈u, y〉)i)

= (a+ bi)〈u+ iv, x+ iy〉C.

Symmetry:

〈u+ iv, x+ iy〉C = 〈u, x〉+ 〈v, y〉+ (〈v, x〉 − 〈u, y〉)i
= 〈x, u〉+ 〈y, v〉+ (〈y, u〉 − 〈x, v〉)(−i)

= 〈x+ iy, u+ iv〉C.
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P.D.:

〈u+ iv, u+ iv〉C = 〈u, u〉+ 〈v, v〉+ (〈v, u〉 − 〈u, v〉)i
= ‖u‖2 + ‖v‖2 + 0i.

This quantity is always non-negative, and it is zero exactly when both u = 0 and v = 0.

2. We check that fC has the inner-product property that (fC)∗ demands:

〈fC(u+ iv), x+ iy〉C = 〈f(u) + if(v), x+ iy〉C
= 〈fu, x〉+ 〈fv, y〉+ (〈fv, y〉 − 〈fu, x〉)i
= 〈u, fx〉+ 〈v, fy〉+ (〈v, fy〉 − 〈u, fx〉)i
= 〈u+ iv, fx+ ify〉C
= 〈u+ iv, fC(x+ iy)〉C.

3. Beginning with a self-adjoint operator f on a real inner-product space V , we have shown that fC is a self-
adjoint operator on the complexified inner-product space VC. The complex spectral theorem thus says
that fC is diagonalizable on VC in an orthonormal basis (uj + ivj)

n
j=1, and in that eigenbasis it presents

as a real diagonal matrix. From here, we proceed as in Problem 1.3: the list (u1, . . . , un, v1, . . . , vn)
spans V and are eigenvectors for f , and Gram–Schmidt (modified to discard vectors that it nullifies)
reduces this to an orthonormal list (w1, . . . , wn). Finally, this orthonormal set is also an eigenbasis:
Gram–Schmidt modifies each vector by an orthogonal projection, and eigenspaces for normal operators
are mutually perpendicular, so each vector remains within its eigenspace. (ECP)

Problem 3.3. Suppose V is an inner product space and that f : V → V is an operator satisfying the
hyponormality condition

‖f∗v‖ ≤ ‖fv‖.

Show that if V is finite-dimensional then f is automatically normal (i.e., the “inequality” is actually always
an equality).

Solution. This is a trace problem. Start by selecting an orthonormal basis (ej) of V , and use the equality

tr(f∗f) =
∑
j

‖fej‖2.

Because the trace is invariant under cyclic permutation, we also have

tr(f∗f) = tr(ff∗) = tr((f∗)∗f∗) =
∑
j

‖f∗ej‖2.

The inequality ‖fv‖ ≥ ‖f∗v‖ lets us compare these sums termwise: it must be the case that ‖fej‖ = ‖f∗ej‖
for each j. Finally, the Pythagorean theorem lets us calculate ‖fv‖ for any v = k1e1 + · · ·+ knen:

‖fv‖2 = ‖f(k1e1 + · · ·+ knen)‖2

= |k1|2‖fe1‖2 + · · ·+ |kn|2‖fen‖2

= |k1|2‖f∗e1‖2 + · · ·+ |kn|2‖f∗en‖2

= ‖f∗(k1e1 + · · ·+ knen)‖2 = ‖f∗v‖2. (ECP)
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4 For submission to Rohil Prasad

Problem 4.1. Let Vn = span{1, cosx, . . . , cosnx, sinx, . . . , sinnx} be the vector space of functions consid-
ered over the previous few assignments, and let D : Vn → Vn be the differentiation operator on Vn. Having
previously concluded that D was normal, find a basis for Vn such that the matrix presentation of D has the
form guaranteed by Axler 9.34.

Solution. Rearrange the basis to take the form

{1, sinx, cosx, sin 2x, cos 2x, . . . , sinnx, cosnx}.

The matrix presentation is then

D =



0
0 −1
1 0

0 −2
2 0

. . .

0 −n
n 0


,

with zeroes in the omitted positions. (ECP)

Problem 4.2. Suppose V is an inner product space and that f : V → V is an operator. Prove first that
det f∗ = det f , then conclude

det
√
f∗f = |det f |.

Solution. Determinants can be computed using a matrix formula, and an orthonormal matrix presentation
of f gives rise to an orthonormal matrix presentation of f∗ by taking its conjugate transpose. Rearranging
the sum to range over rows rather than columns shows det f∗ = det f . Additionally, since

√
f satisfies√

f ◦
√
f = f , we have det

√
f · det

√
f = det f , hence det

√
f =
√

det f . Altogether, this gives

det
√
f∗f =

√
det f∗f =

√
det f∗ · det f =

√
det f · det f =

√
|det f |2 = |det f |. (ECP)

Problem 4.3. 1. Give an example of a real vector space V and an operator f : V → V such that
tr(f2) < 0.

2. Suppose that V is a real vector space and that f : V → V is an operator admitting a basis of eigen-
vectors. Show that tr(f2) ≥ 0.

Solution. 1. Take f =

(
0 −1
1 0

)
to be the rotation operator, with square f2 =

(
−1 0
0 −1

)
the

double reflection operator. This has tr f2 = −2.

2. The eigenbasis of f diagonalizes it. The square of a diagonal matrix is computed entry-wise, which
means that all the entries of the diagonal presentation of f2 are nonnegative. The trace is the sum of
the diagonal elements, so it too is nonnegative. (ECP)

Problem 4.4. Suppose V is a real vector space with dimV = n and f : V → V is such that ker f◦(n−1) 6=
ker f◦(n−2). Prove that f has at most two distinct eigenvalues and that fC has no nonreal eigenvalues.

Solution. The inequality ker f◦(n−1) 6= ker f◦(n−2) states that the generalized eigenspace of weight 0 has
dimension at least n − 1. If f had two distinct other eigenvalues, then they would both have witnessing
eigenvectors which would, in turn, give a contradicting bound dimG(0, f) ≤ n − 2. If f had a nonreal
eigenvalue, its complex conjugate would also be a nonreal eigenvalue, fueling the same contradiction. (ECP)
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