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1 For submission to Thayer Anderson

Problem 1.1. Suppose that f, g : K3 → K3 are two linear functions that each have eigenvalues 2, 6, and
7. Show that there exists a linear function h : K3 → K3 satisfying f = h ◦ g ◦ h−1.

Solution. Because each has enough eigenvalues to exhaust the 3–dimensional space K3, f and g are both
diagonalizable — i.e., there exist bases x1, x2, x3 and y1, y2, y3 such that f expressed in the first basis and g
expressed in the second basis both give the same matrix presentation 2 0 0

0 6 0
0 0 7

 .

Write d for this diagonal matrix, bx for the change-of-basis operator associated to the x–basis, and by for
the change-of-basis operator associated to the y–basis. Algebraically, we thus have the two equations

b−1x dbx = f, b−1y dby = g.

By sharing d across the two equations, we get

f = (b−1y bx)−1g(b−1y bx). (ECP)

Problem 1.2. A norm on V is a function ‖ − ‖ : V → R≥0 satisfying

• ‖u‖ = 0 if and only if u = 0.

• ‖k · u‖ = |k| · ‖u‖ for any scalar k.

• ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

In this problem, we will show that when a norm arises from an inner product by ‖v‖ =
√
〈v, v〉, we can

recover the inner product from the norm.

1. Suppose that V is a real inner product space. Show that

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2

4
.

2. Suppose that V is a complex inner product space. Show that

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4
.

Solution. 1. This is a matter of expanding out the fractions.

‖u+ v‖2 − ‖u− v‖2

4
=

1

4
(〈u+ v, u+ v〉 − 〈u− v, u− v〉)

=
1

4
(〈u, u〉+ 〈v, v〉+ 2〈u, v〉 − 〈u, u〉 − 〈v, v〉+ 2〈u, v〉)

= 〈u, v〉.
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2. This is also a matter of expanding out the fractions, but this time we have to be careful to track the
conjugate-linearity of the right-hand argument of the inner product.

——–//—— =
1

4
(〈u+ v, u+ v〉 − 〈u− v, u− v〉+ 〈u+ iv, u+ iv〉i− 〈u− iv, u− iv〉i)

Start by dealing just with the factors without any is:

=
1

4
(〈u, u〉+ 〈v, v〉+ 〈u, v〉+ 〈u, v〉 − 〈u, u〉 − 〈v, v〉+ 〈u, v〉+ 〈u, v〉

+ 〈u+ iv, u+ iv〉i− 〈u− iv, u− iv〉i)

=
1

4
(4 Re〈u, v〉+ 〈u+ iv, u+ iv〉i− 〈u− iv, u− iv〉i)

Now look at the terms with is:

=
1

4
(4 Re〈u, v〉+ i〈u, u〉+ i〈v, v〉+ 〈u, v〉 − 〈u, v〉 − (i〈u, u〉+ i〈v, v〉 − 〈u, v〉+ 〈u, v〉))

=
1

4
(4 Re〈u, v〉+ 4i Im〈u, v〉) = 〈u, v〉. (ECP)

2 For submission to Davis Lazowski

Problem 2.1. Suppose that S : V → V is a linear operator on an inner product space V . Define a new
pairing by

〈u, v〉S = 〈Su, Sv〉.

1. Suppose that S is injective. Show that this new pairing is also an inner product on V .

2. Suppose that S fails to be injective. Show that this same pairing is not an inner product on V .

Solution. Part 1

• positive definite: 〈u, u〉S ≥ 0 because 〈Su, Su〉 ≥ 0 due to the definiteness of the original inner product.

• nondegenerate: If 〈Su, Su〉 = 0, then Su = 0, by nondegeneracy of the original inner product. By
injectivity of S, then u = 0, as required.

• Linear in the first argument : 〈S(u+ λw), Sm〉 = 〈Su+ λSw, Sm〉 by the linearity of S. By the
linearity of the original inner product, therefore 〈Su+ λSw, Sm〉 = 〈Su, Sm〉+λ 〈Sw, Sm〉 as required.

• Conjugacy : 〈Su, Sw〉 = 〈Su, Sw〉, because this is true for the original inner product.

Part 2
In this case, there exists u 6= 0 : S = 0. Then 〈Su, Su〉 = 〈0, 0〉 = 0, so this pairing is degenerate. (DL)

Problem 2.2. Suppose V is a finite–dimensional real vector space, and suppose 〈−,−〉1 and 〈−,−〉2 are
two inner products on V .

1. Show that there exists a number c > 0 with ‖v‖1 ≤ c‖v‖2.

2. Suppose further that 〈v, w〉1 = 0 if and only if 〈v, w〉2 = 0. Show that there is a number c > 0 such
that 〈−,−〉1 = c · 〈−,−〉2.
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Solution. Part 1
If ||v||21 ≤ c||v||22, then by positivity ||v||1 ≤

√
c||v||2. Therefore, we’ll work with norms squared.

Let v1....vn an orthonormal basis of V with respect to 〈〉1. Then

||v||21 = ||
n∑

j=1

αjvj ||21 = 〈
n∑

j=1

αjvj ,

n∑
j=1

αjvj〉
1

=

n∑
j=1

|αj |2

Let m = max{||v1||22, ||v2||22 . . . ||vn||22}. Then

||v||22 = ||
n∑

j=1

αjvj ||22

= 〈
n∑

j=1

αjvj ,

n∑
i=1

αivj〉
2

=

n∑
j=1

n∑
i=1

αjα
∗
i 〈vj , vi〉2

By Cauchy-Schwarz, 〈vj , vi〉 ≤ ||vj ||||vi|| ≤ max{||vj ||22, ||vi||22} ≤ m. Furthermore, |αjα
∗
i | ≤ max{|αj |2, |αi|2} ≤

|αj |2 + |αi|2.
Therefore

n∑
j=1

n∑
i=1

αjα
∗
i 〈vj , vi〉2

≤
n∑

j=1

n∑
i=1

αjα
∗
im

≤ m
n∑

j=1

n∑
i=1

|αj |2 + |αi|2

≤ m[||v||21 + ||v||21]

=⇒ ||v||22 ≤ 2m||v||21

As required.
Part 2
In this case, an orthonormal basis e1....en of 〈,〉1 is also an orthogonal basis of 〈,〉2, because 〈ei, ej〉1 =

0 =⇒ 〈ei, ej〉2 = −. It’s enough to show that 〈ej , ej〉2 = c for every j, because then we can expand any
vector in terms of this orthonormal basis to achieve the desired result.

Suppose that 〈ei, ei〉2 = c1 and 〈ej , ej〉2 = c2. Then

〈ei −
√
c1
c2
ej , ei +

√
c1
c2
ej〉

2

= 〈ei, ei〉2 −
c1
c2
〈ej , ej〉2

= c1 − c1 = 0

Therefore, by our assumptions,

〈ei −
√
c1
c2
ej , ei +

√
c1
c2
ej〉

1

= 0
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Expanding this out, we recover

〈ei, ei〉 −
c1
c2
〈ej , ej〉 = 1− c1

c2

Therefore, for this to be zero, we must have c1 = c2. Therefore done. (DL)

Solution. Here’s a slightly shorter version of Part 1 (that is very much the same in spirit). For a basis
e1, . . . , en which is orthonormal for the second inner product, we have

‖v‖2 = ‖a1e1 + · · ·+ anen‖2 =
√
a21 + · · ·+ a2n.

For the first inner product, we consider the same sum:

‖v‖1 = ‖a1e1 + · · ·+ anen‖1.

However, this decomposition is not necessarily orthonormal for the first inner product, so we have to use the
triangle inequality.

≤ ‖a1e1‖1 + · · ·+ ‖anen‖1
= |a1|‖e1‖1 + · · ·+ |an|‖en‖1.

Taking m = max{‖e1‖1, . . . , ‖en‖1}, we get a bound

≤ |a1|m+ · · ·+ |an|m
= (|a1|+ · · ·+ |an|)m.

Finally, each of the terms |aj | is individually bounded above by our explicit formula for ‖v‖2, hence we have
yet another bound

≤ (‖v‖2 + · · ·+ ‖v‖2)m

= ‖v‖2 · n ·m. (ECP)

3 For submission to Handong Park

Problem 3.1. What happens if Gram–Schmidt is applied to a list of vectors that is not linearly independent?

Solution. It breaks: for a list of vectors v1, . . . , vn with intermediate subspaces

Uj = span{v1, . . . , vj},

Gram–Schmidt operates by forming the vectors wj = vj − PUj−1vj and normalizing them. If vj ∈ Uj−1
witnesses a linear combination of the preceding vectors, then the resulting vector wj is zero — but the zero
vector cannot be normalized. (ECP)

Problem 3.2. Suppose V is a finite–dimensional complex vector space, and suppose f : V → V is a linear
function whose eigenvalues are all of absolute value less than 1. For any ε > 0, show there exists a positive
integer m with ‖Tmv‖ < ε‖v‖ for every v ∈ V . (Hint: you could begin with an upper-triangular presentation
of f .)
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Solution. We will, in fact, begin with an orthonormal upper-triangular presentation M of f . In class, we
gave a formula for the entries of a product matrix:

(AB)ik =

n∑
j=1

Aij ·Bjk.

This generalizes to powers as follows:

(Mm)ik =
∑

j1,...,jn−1

Mij1Mj1j2 · · ·Mjm−2jm−1
Mjm−1k.

The upper-triangular property of M means that Myx = 0 whenever y > x. This makes our sum much
smaller:

(Mm)ik =
∑

j1≤···≤jm−1

Mij1Mj1j2 · · ·Mjm−2jm−1
Mjm−1k,

where the sum is now taken over weakly increasing sequences of integers between i and k. The main
observation is that for m � 0, these sequence must mostly consist of repeated elements: at most k − i
different elements can appear, so at least m − (k − i) entries of the form Ajj — i.e., diagonal entries —
must appear. Since the diagonal entries all satisfy |Ajj | < 1, we have limm→∞ |Ajj |m = 0 for any j. Taking
m large enough so that |Ajj |m < ε/(n ·

∏
i<k Aik) for any choice of j ensures that the entries of the linear

combination coefficients expressing any vector v ∈ V get scaled down by at least ε. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. 1. On P2(R), consider the inner product given by

〈p, q〉 =

∫ 1

0

p(x)q(x)dx.

Apply the Gram–Schmidt procedure to the basis (1, x, x2) to produce an orthonormal basis of P2(R).

2. Find a polynomial q ∈ P2(R) such that for every p ∈ P2(R),

p

(
1

2

)
= 〈p, q〉

under the same inner product.

Solution. 1. This problem is largely computational.

1: We need only check that 1 is a normal vector:√∫ 1

0

1 · 1dx =
√

1 = 1.

x: First, we remove the projection of x onto the subspace spanned by 1:

x− 1 ·
∫ 1

0

x · 1dx = x− 1

2
.

Then, we calculate the norm

∥∥∥∥x− 1

2

∥∥∥∥ =

√∫ 1

0

(
x− 1

2

)2

dx =

√√√√ 1

3

(
x− 1

2

)3
∣∣∣∣∣
1

x=0

=
1

2
√

3
,
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so that we can normalize the result:

x− 1/2

1/2
√

3
= 2
√

3x−
√

3.

x2: Again, remove the projection of x2 onto the subspace spanned by 1 and x:

x2 − 1 ·
∫ 1

0

x2 · 1dx− (2
√

3x−
√

3) ·
∫ 1

0

x2 · (2
√

3x−
√

3)dx = x2 − x+
1

6
.

Then, we calculate the norm∥∥∥∥x2 − x+
1

6

∥∥∥∥ =

√∫ 1

0

(
x4 − 2x3 +

4

3
x2 − 1

3
x+

1

36

)
dx =

1

6
√

5
,

so that we can normalize the result:

x2 − x+ 1
6

1
6
√
5

= 6
√

5x2 − 6
√

5x+
√

5.

2. Write ϕ(p) for the functional ϕ(p) = p(1/2). Our by-hand proof of Riesz’s theorem gives an explicit
formula for the polynomial q satisfying 〈p, q〉 = ϕ(p):

q = ϕ(e1)e1 + ϕ(e2)e2 + ϕ(e3)e3,

for any orthonormal basis (e1, e2, e3) of our space of polynomials. In the previous part, we calculated
such a basis. Hence:

q = ϕ(1) · 1 + ϕ(2
√

3x−
√

3) · (2
√

3x−
√

3) + ϕ
(

6
√

5x2 − 6
√

5x+
√

5
)
·
(

6
√

5x2 − 6
√

5x+
√

5
)

= 1 · 1 + 0 · (2
√

3x−
√

3) +
−
√

5

2
·
(

6
√

5x2 − 6
√

5x+
√

5
)

= −15x2 + 15x− 3

2
. (ECP)

Problem 4.2. The Fibonacci sequence F1, F2, . . . is defined by

F1 = 1, F2 = 1, Fn = Fn−2 + Fn−1.

We also define a linear function T : R2 → R2 by T (x, y) = (y, x+ y).

1. Show that Tn(0, 1) = (Fn, Fn+1).1

2. Find the eigenvalues of T .

3. Find a basis of R2 consisting of eigenvectors of T .

4. Use the solution to the previous part to compute Tn(0, 1) in closed form.

5. Conclude more lazily that the nth Fibonacci number Fn is the nearest integer to

1√
5

(
1 +
√

5

2

)n

.

1This used to read (Fn, Fn−1), which was a typo. Sorry!
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Solution. 1. We give an inductive proof. The claim holds for n = 1:

T 1(0, 1) = (1, 0 + 1) = (1, 1) = (F1, F2).

The inductive step follows from

Tn+1(0, 1) = TTn(0, 1) = T (Fn, Fn+1) = (Fn+1, Fn + Fn+1) = (Fn+1, Fn+2).

2. The eigenvalue equation for T is(
y

x+ y

)
= T

(
x
y

)
= λ

(
x
y

)
=

(
λx
λy

)
.

Since λ = 0 cannot satisfy this relation, we are free to divide by λ and combine the two equations to
get 0 = λ2 − λ− 1, or

λ =
1±
√

5

2
.

3. Write λ+ and λ− for the positive and negative eigenvalues respectively. By picking x = 1 and using

the first row of the eigenvector equation, an eigenvector for λ+ is

(
1
λ+

)
and an eigenvector for λ−

is

(
1
λ−

)
. These are linearly independent and of the right length, hence they form a basis.

4. We seek a+ and a− solving (
0
1

)
= a+

(
1
λ+

)
+ a−

(
1
λ−

)
.

The first row forces a+ = −a−, and the second row gives 1 = a+
√

5. Hence, we have(
0
1

)
=

1√
5

(
1
λ+

)
+
−1√

5

(
1
λ−

)
.

Applying Tn to this equation gives

Tn

(
0
1

)
=
λn+√

5

(
1
λ+

)
+
−λn−√

5

(
1
λ−

)
.

The first entry reads Fn = 1√
5
(λn+ − λn−).

5. We know that Fn always gives an integer value, but both λn+ and λn− are always irrational values. The
observation here is that because |λ−| < 1, 1√

5
λn− <

1
2 , so that this term never disturbs the sum by very

much. In particular, Fn is always the nearest integer to the first term alone:

Fn ≈
λn+√

5
. (ECP)
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