Homework #7 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad

1 For submission to Thayer Anderson
Problem 1.1. Suppose that f,g: K2 — K? are two linear functions that each have eigenvalues 2, 6, and
7. Show that there exists a linear function h: K2 — K? satisfying f = hogoh™!.

Solution. Because each has enough eigenvalues to exhaust the 3-dimensional space K2, f and g are both
diagonalizable — i.e., there exist bases z1, x2, x5 and y1, Y2, y3 such that f expressed in the first basis and g
expressed in the second basis both give the same matrix presentation

2 00

0 6 0

0 0 7

Write d for this diagonal matrix, b, for the change-of-basis operator associated to the z—basis, and b, for
the change-of-basis operator associated to the y—basis. Algebraically, we thus have the two equations

b, db, = f, b, 'db, =g.

By sharing d across the two equations, we get

f=(b"b2) " g(by " ba). (ECP)
Problem 1.2. A norm on V is a function || — ||: V — Rx( satisfying
e ||u]| =0 if and only if u = 0.
o ||k ul|| = |k|-||u]| for any scalar k.
o llutol < flul + o]
In this problem, we will show that when a norm arises from an inner product by ||v|| = \/(v,v), we can

recover the inner product from the norm.
1. Suppose that V is a real inner product space. Show that

_ Jut ol = flu— vl

(u,v) ;

2. Suppose that V' is a complex inner product space. Show that

lu+ olf* — [lu = ol® + [lu+ iv]|*i — [|u — iv||*
7 :

<7.L, U> =

Solution. 1. This is a matter of expanding out the fractions.

2 2
- 1
||’LL—|—’U|| 4”” UH :7(<’LL+’U7’U,—|-’U>—<’U,—U,'U,—U>)




2. This is also a matter of expanding out the fractions, but this time we have to be careful to track the
conjugate-linearity of the right-hand argument of the inner product.

—f—= i(<u+v,u+v> —(u—v,u—v) + (u+iv,u+ )i — (u— v, u — iv)i)

Start by dealing just with the factors without any is:

= i(<uau> + <1J,U> + <U’U> + <u’U> - <u7u> - <’U,1)> + <U>U> + <u’ U)
+ (u+ v, u+ i — (u — v, u — v)7)

= 3(4 Re(u, v) + (u +iv,u +iv)i — (u — v, u — v)7)

Now look at the terms with is:

= 3(4Re(u,v> + i{u, u) + (v, v) + {u,v) — (u,v) — (i{u, u) + i{v,v) — (u,v) + (u, v)))

= 3(4 Re(u,v) + 4i Im(u,v)) = (u,v). (ECP)

2 For submission to Davis Lazowski

Problem 2.1. Suppose that S: V — V is a linear operator on an inner product space V. Define a new
pairing by
(u,v)s = (Su, Sv).

1. Suppose that S is injective. Show that this new pairing is also an inner product on V.
2. Suppose that S fails to be injective. Show that this same pairing is not an inner product on V.

Solution. Part 1

e positive definite: (u,u)g > 0 because (Su, Su) > 0 due to the definiteness of the original inner product.

e nondegenerate: If (Su,Su) = 0, then Su = 0, by nondegeneracy of the original inner product. By
injectivity of .S, then u = 0, as required.

o Linear in the first argument: (S(u+ Aw),Sm) = (Su+ ASw,Sm) by the linearity of S. By the
linearity of the original inner product, therefore (Su + ASw, Sm) = (Su, Sm)+ X\ (Sw, Sm) as required.

e Conjugacy: (Su, Sw) = (Su, Sw), because this is true for the original inner product.

Part 2
In this case, there exists u # 0: S = 0. Then (Su, Su) = (0,0) = 0, so this pairing is degenerate. (DL)

Problem 2.2. Suppose V is a finite-dimensional real vector space, and suppose (—, —); and (—, =)y are
two inner products on V.

1. Show that there exists a number ¢ > 0 with [jv]|; < ¢[|v]|2.

2. Suppose further that (v,w); = 0 if and only if (v,w); = 0. Show that there is a number ¢ > 0 such
that <—, —>1 = C- <—7 —>2.



Solution. Part 1
If ||v]|? < c||v]|3, then by positivity |[v||1 < v/¢||v||2- Therefore, we’ll work with norms squared.

Let v;....v, an orthonormal basis of V' with respect to (),. Then
n n n n
1ollF = 11D oyl = O aju, y ajuy) = oyl
j=1 j=1 j=1 j=1
Let m = max{||v1|[3, [|v23 - - - ||vn]|3}. Then
n
[[]3 = ||Zajvj||§
ZO‘J%ZO‘ vj)
n n
-3 S et o

j=11i=1

By Cauchy-Schwarz, (v, v;) < |lv;||||vi]] < max{||vj||§, |vs]|3} < m. Furthermore, lajof| < max{\aj|2, lou|?} <
| 4 .
Therefore

n n
E E aja; (vj,vi),

j=11i=1

< ZZajafm
j=11i=1
n n
<m Y N P + o

j=11i=1
< m[[o][§ + [|v][7]
= |[vl[3 < 2ml[v||?

As required.

Part 2
In this case, an orthonormal basis e;....e, of (,); is also an orthogonal basis of (,),, because (e;,e;), =
0 = (ei,ej), = —. It’s enough to show that (e;,e;), = ¢ for every j, because then we can expand any

vector in terms of this orthonormal basis to achieve the desired result.
Suppose that (e;,e;), = c1 and (ej,e;), = c2. Then

C1 C1
A/ 62‘3]762 4/ 02€J>2
C1
= (e, €i)y — — (€j,€j)y
C2

:c1—01:0

C1 C1
— 76].762. + f6j> = 0
C2 C2o 1

Therefore, by our assumptions,



Expanding this out, we recover

C1 !
e ei) = - lejoes) =1 =2
Therefore, for this to be zero, we must have ¢; = c¢3. Therefore done. (DL)

Solution. Here’s a slightly shorter version of Part 1 (that is very much the same in spirit). For a basis
e1,...,en which is orthonormal for the second inner product, we have

HU||2: ||a1€1+"'+anen|l2: a%++a%
For the first inner product, we consider the same sum:
[vlli = llazer + -+ + aneqlf1.

However, this decomposition is not necessarily orthonormal for the first inner product, so we have to use the
triangle inequality.

< larer|ls + -+ + [[anen|ls

= laalllexlly +- - + lan[llen]lr-
Taking m = max{|le1||1,- -, |len]l1}, we get a bound

<lailm+ -+ |an|m
= (Ja1| + - - + |an|)m.

Finally, each of the terms |a;| is individually bounded above by our explicit formula for ||v||2, hence we have
yet another bound

< ([vll2 + -+ llvll2)m
= [lvfl2 - n-m. (ECP)

3 For submission to Handong Park

Problem 3.1. What happens if Gram—Schmidt is applied to a list of vectors that is not linearly independent?

Solution. It breaks: for a list of vectors vy, ..., v, with intermediate subspaces
U; = span{vq,...,v;},

Gram-Schmidt operates by forming the vectors w; = v; — Py,_,v; and normalizing them. If v; € U;_1
witnesses a linear combination of the preceding vectors, then the resulting vector w; is zero — but the zero
vector cannot be normalized. (ECP)

Problem 3.2. Suppose V is a finite-dimensional complex vector space, and suppose f: V — V is a linear
function whose eigenvalues are all of absolute value less than 1. For any € > 0, show there exists a positive
integer m with ||T™v|| < ¢||v|| for every v € V. (Hint: you could begin with an upper-triangular presentation

of f.)



Solution. We will, in fact, begin with an orthonormal upper-triangular presentation M of f. In class, we
gave a formula for the entries of a product matrix:

(AB)ik = > _ Aij - B

=1
This generalizes to powers as follows:
m —
(M™)i = > MiyMjyg - My, s My, ke
Jiseesdn—1

The upper-triangular property of M means that M,, = 0 whenever y > x. This makes our sum much
smaller:
(Mm)ik = Z Mijl Mjljz T Mjmfljmflemflk”
J1<<gm-1

where the sum is now taken over weakly increasing sequences of integers between ¢ and k. The main
observation is that for m > 0, these sequence must mostly consist of repeated elements: at most k — ¢
different elements can appear, so at least m — (k — @) entries of the form A;; — i.e., diagonal entries —
must appear. Since the diagonal entries all satisfy |A,;| < 1, we have lim,, ,« |4;;|™ = 0 for any j. Taking
m large enough so that |A;;|™ < e/(n -], Au) for any choice of j ensures that the entries of the linear
combination coefficients expressing any vector v € V' get scaled down by at least €. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. 1. On P(R), consider the inner product given by

(p,q) :/0 p(x)q(x)dz.

Apply the Gram—Schmidt procedure to the basis (1,2, 2?) to produce an orthonormal basis of P(R).
2. Find a polynomial ¢ € P>(R) such that for every p € Py(R),

P <;) = (p,q)

Solution. 1. This problem is largely computational.

under the same inner product.

1: We need only check that 1 is a normal vector:

1
/ 1-1der=+v1=1.
0

x: First, we remove the projection of z onto the subspace spanned by 1:

! 1
x—l-/x&dx:x—f.
0 2

Then, we calculate the norm




so that we can normalize the result:

r—1/2 B
1/2\/3 = 2V/3z — V3.

22: Again, remove the projection of z? onto the subspace spanned by 1 and 2:

1 1
xz—l-/x2~1dx—(2\/§x—\/§)~/wz-(2\/§x—\/§)dx:x2—x+é.
0 0

Then, we calculate the norm

1 ! 4 1 1 1
2 _ | = 4_ 943 4 Z42 —Vdr = ——
T erGH \//o (z T +3x 3I+36) T 6v5’

so that we can normalize the result:

22—+ 1
T8 6v/6a? — 6v5z + V.
6V5

2. Write ¢(p) for the functional ¢(p) = p(1/2). Our by-hand proof of Riesz’s theorem gives an explicit
formula for the polynomial ¢ satisfying (p, q) = ¢(p):

q=p(e1)er + p(ea)ea + p(es)es,

for any orthonormal basis (e, es, e3) of our space of polynomials. In the previous part, we calculated
such a basis. Hence:

qg=p(1)-1+¢(2V3z —V3) - (2V3z — V3) + ¢ (6\/5562 — 6v5x + \/5) . (6\/5332 — 6V5z + \/5)
:1~1+0-(2\/§w—\/§)+_T\/5~(6\@%2—6\/53:—&-\/5)
= —152% + 15z — g (ECP)
Problem 4.2. The Fibonacci sequence Fy, F, ... is defined by
=1, =1, Fo=Fy o+ Fp1.
We also define a linear function 7: R? — R? by T'(z,y) = (y,z + y).
1. Show that T7(0,1) = (E,, Fys1).!

2. Find the eigenvalues of T'.

Find a basis of R? consisting of eigenvectors of T

- W

Use the solution to the previous part to compute 77(0,1) in closed form.

5. Conclude more lazily that the n*® Fibonacci number F}, is the nearest integer to

i14_\/5n
Vi 2 '

I This used to read (Fy, Fy,—1), which was a typo. Sorry!




Solution. 1. We give an inductive proof. The claim holds for n = 1:
TY0,1) = (1,0 + 1) = (1,1) = (Fy, Fy).
The inductive step follows from

Tn+1(07 1) = TT”(0> 1) = T(Fru Fn+1) = (FnJrl,Fn + Fn+1) = (Fn+1a Fn+2)~

2. The eigenvalue equation for T is

Y T T AT
= T = )\ = .
(fcﬂ/) (y) (y> (Ay)
Since A = 0 cannot satisfy this relation, we are free to divide by A and combine the two equations to

get 0=X2—-X—1,o0r
1++v5

)\:2.

3. Write A4 and A_ for the positive and negative eigenvalues respectively. By picking x = 1 and using

the first row of the eigenvector equation, an eigenvector for A, is and an eigenvector for A_

1
A
is < 1 > These are linearly independent and of the right length, hence they form a basis.

(V)= ()=o)

The first row forces a, = —a_, and the second row gives 1 = a, /5. Hence, we have

(1)=500 ) 00

Applying T™ to this equation gives

m(1)=% () m ()

The first entry reads F,, = %(/\’_f_ —A).

4. We seek a; and a_ solving

5. We know that F;, always gives an integer value, but both A} and A" are always irrational values. The
observation here is that because |A_| < 1, is)\’j < %, so that this term never disturbs the sum by very
much. In particular, F;, is always the nearest integer to the first term alone:

)\TL
F,~ =L, ECP
v (ECP)



