
EXPONENTIALS AND THE EULER IDENTITY

1. DISSECTING THE LIMIT

In a precalculus course, the special number e is often introduced with the expression
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or some equivalent thing without the word “limit” appearing. This appears frequently in the context of a sea of
interest rate problems in an effort to motivate the study of such expressions; the number e appears as the base in the
limit of compounding interest to continuously compounding interest.

Then, when discussing transcendental functions in a calculus course, a new observation about the exponential is
discussed:
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This property is stated, usually without proof, as characterizing the exponential — that is, the exponential f (x) =
exp(x) is the unique function f satisfying the differential equation f ′(a) = f (a) for all a ∈R.

Let’s begin by justifying the equivalence of these two definitions. Recall that there is an inexact method to solving
differential equations described as slope fields, called Euler’s method. Euler’s method moves out through the slope
field using well-approximating tangent lines; for a fixed step size∆x and starting point a, we set

xn = a+ n∆x, yn = yn−1+∆x · f ′(xn−1, yn−1).

For∆x sufficiently small, we might hope that we have yn ≈ f (xn), where f solves the differential equation described
by f ′.1

Let’s complicate things slightly before proceeding: fix a real number k, and consider the function f (x) = exp(k x).
Then
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= k exp(k x)| f (x)=a = ka.

We’re going to use Euler’s method to solve the associated differential equation f ′(x, y) = ky and exp(k ·0) = exp(0) =
1. If we solve this differential equation on the interval [0,1], then when x = 1 we’ll have an approximate value for
exp(k · 1) = exp k, and so a formula for the exponential.

We’ll set the step size to∆x = 1/n and make n iterations to get to xn = 1. We’ve arranged that y0 = 1, and so we
compute

y1 = y0+∆x · f ′(x0, y0) = 1+
k

n
.

Straight away, we can compute the next iteration as well:
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1This requires some kind of smoothness condition on f . Our exponential function, if it exists, is going to be infinitely differentiable, and so
we’re safe.
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We can already see a pattern in the calculation: it sure looks like ym =
�

1+ k
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�m
. This is indeed the case:

ym = ym−1+∆x · f ′(xm−1, ym−1)
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Hence, yn =
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, and we get the limiting calculation ek = limn→∞
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, as desired, having begun with the

differential equation definition.

2. THE COMPLEX EXPONENTIAL

Clearly, the differential equation definition of the exponential is a powerful tool, but in fact we can push this
further: let’s take our method in the previous section to be the definition of the exponential. Pick a velocity k with
f ′(0) = k and set f (0) = 1. We can build a slope field V with Va = a · k by multiplying in a, and we define the
exponential exp k to be f (1), where f is a solution to this slope field, called an integral curve. This is a rephrasing
of the above differential equations problem.

Now, let’s aim high and use this to compute exp(iπ); we’ll modify the technique a little bit, so that we instead
build the slope field V associated to i and follow the integral curve out π units. Recall that for a point z = x+ i y in
the complex plane C, we can compute i z = i(x + i y) = (−y)+ i x. Here’s a graph of the resulting slope field:
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FIGURE 1. Slope field on C associated to i .

You can see that it sort of spirals around, and you can imagine that, starting at z = 1+0i and following the arrows
around forπ units, you’ll end up on the other end of the semicircle you’ve traced out, at−1+0i . We’ll prove exactly
that, assuming some knowledge of solutions to second order linear differential equations. Modeling the complex
place C as the real plane R2 with the ability to multiply, we’re interested in a pair of functions x, y :R→C so that
the curve γ (t ) = x(t )+ i y(t ) = (x+ i y)(t ) in the plane is an integral curve for our vector field V , i.e., γ ′(t ) = iγ (t ).
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In terms of our coordinate functions x and y, this imposes the relation (x ′(t ), y ′(t )) = (−y(t ), x(t )). We differentiate
again to get the following important relation:

(x ′′(t ), y ′′(t )) = (−y ′(t ), x ′(t )) = (−x(t ),−y(t )).

So, both x and y satisfy the differential equation f ′′(t ) = − f (t ). The difference between them is that, since
γ (0) = 1+ 0i = (1,0) and γ ′(0) = 0+ 1i = (0,1), we have the distinct initial conditions

x(0) = 1, y(0) = 0,

x ′(0) = 0, y ′(0) = 1.

These functions have names: cosine and sine! The value π is defined to be the first nonzero positive root of sine,
and so we compute γ (π) = cosπ+ i sinπ=−1+ i · 0=−1. This gives Euler’s identity:

e iπ+ 1= 0.

3. REMARKS

This technique is absurdly general. In any context where you can multiply and differentiate, called a Lie group,
you can build an exponential function which sends tangent velocities to points in the Lie group. The two Lie group
exponentials we’ve investigated in this note are

R∼= T1GL1(R)→GL1(R) =R \ {0}
and

C∼= T1GL1(C)→GL1(C) =C \ {0}.
Well-behavedness of the initial conditions that go into building the vector field V demonstrate that the exponential
is always a continuous map, which in turn tells you why the standard real-valued exponential is always nonnegative;
its image has to land in the positive connected component of GL1(R). This also explains other exponentials you’ll
counter: the matrix exponential, for instance, is built in exactly the same way.
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