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Abstract

We construct a p-adic measure valued in integral g—expansions of
meromorphic Jacobi forms in an exponential coordinate, extending Katz’s
Eisenstein measure [Kat77] and the Mazur measure. We give an explicit
formula for its moments in terms of the Weierstrass elliptic function.

We produce this measure via homotopy theory. The machinery of
[AHRDb] was developed with the intention of taking congruence relations
as input and producing E..—orientations as output. We run their machine
in reverse, using as input the recent results of [CL25] on the existence of
Eo—orientations of Tate fixed-point objects.
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1 Introduction

Definition 1.1 ([Kat77, Sections 3.1-2]). For A a torsion-free Z,-algebra,
an A-wvalued p—adic moment sequence is a sequence M, € A such that for
any rational polynomial f(r) = > a,r™ € Q[r] with f(Z;) C Z,, the sum
YonanM, € A® Q is an A-integer.

Moment sequences arise out of p—adic integrals via the correspondence

N N
M, = dM r", / dM Z anr" = ZanMn.
Zy Zy n=0 n=0

A-integrality can be interpreted as a family of Kummer congruences on the
sequence elements. For example, the polynomial p~!(r? —r) is p-adically integer-
valued, hence p~*(M,, — M;) must be an A-integer, or equivalently M, = M,
(mod p). Other choices of test polynomial yield other congruences.

We prove the following;:

Main Theorem A. Pick any ¢ € Z); \ {£1}. There is a Z[q]((t));, ~valued
moment sequence whose terms for n > 1 are given by

MWV MWV = 1y (g,8) + (1= ¢) - b(g2(71ri;2ﬂ +(G2(q) —p - Ga(d")),
MYV MV = iy (g, t) + (1~ ¢2) - 2(2_7r1i)2 (Ga(q) —p- Ga(d")),

. u .
M:g:ta - Mv\z}\g:t’, = /”'n(Qa t),

where

1—c" _oy (log(1 —1¢) n—2) ( plog(l —t)
- | pn=2) _ on=2)
il t) = G (pq ( —2ri Par s ’

©q s the g—expansion of the Weierstrass elliptic function, p((]") is its n'" derivative,

and G is the second Eisenstein series.




As warm-up, we also prove the following theorem:

Main Theorem B. Pick any c € Z) \ {#1}. There is a Z((t)), ~valued moment
sequence whose terms for n > 1 are given by

n Am[rn}(o) B pnfltfpm

MM M= (1) Y S (e :

( ) 2 m ((=1)ptt = pQ)m
where A™[r"](0) is the m™ forward finite difference of the test polynomial v
at zero (i.e., its m'™ Mahler coefficient), and where ¢ € Z[t™1] is defined by
(= 1)P=t"P+ (=1)P +pC.
Remark 1.2. The p in front of ¢ in ((—1)PT1 — p{)~™ yields a convergent sum
in Z((t));, despite the unboundedly increasing powers of ¢!

m=1

Remark 1.3. Main Theorem B is essentially the component of Main Theorem A
induced by the pole of p("~2). More precisely:

e The terms of MW it and Man” of nonpositive t—degree match exactly.
We can also identify other subsectors of terms:

e The terms of MWVit" MTd* MWit and MT4 of vanishing ¢~ and ¢—degree
are the moments of the Mazur measure, which p—adically interpolates the
Bernoulli numbers [Lan90, Section 4.3].

e The terms of MY and MW of vanishing ¢-degree are those those of
Katz’s Eisenstein measure [Kat77, Lemma 3.5.6], appearing also in Ando,
Hopkins, and Rezk [AHRD, Section 10].

e The sectors of terms not mentioned above or in the Main Theorems vanish.

Remark 1.4. The Jacobi orientation has captured the attention of many math-
ematicians (e.g., [Hir88, Zag88, Wit94, KYY94, Gri99, BL00, BL03, AFGO0S,
Lib11, BCK 16, LY25]). Until recently [CL25], it had been an open question
whether it refines to a map of E,—ring spectra, which would make it accessible
to the techniques of higher algebra and would induce relations among its special
values (e.g., [AHS04]). Ando, Hopkins, and Rezk [AHRD] provide the machine
traditionally used to resolve such questions, which for the Jacobi orientation
takes as input precisely Main Theorem A—so, these congruences have been of
interest to topologists, geometers, and physicists for some time. (Our proof,
however, concludes the congruences from the separately known E,,—orientation.)

Remark 1.5. See Figure 1 and Figure 2 for visualizations of these congruences
at p = 3, and Figure 3 and Figure 4 (which extends the title figure) for p = 2.
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2 Résumés

Our main theorems are largely an application of existing work, especially a recent
paper of the first author [CL25]. Accordingly, we recall below the inputs which
we require to complete our calculation.

2.1 Résumé on elliptic functions

It will be convenient to have formulas on hand for a variety of standard functions
appearing in the theory of complex elliptic curves. To fix terms, let us consider
(twisted) functions on the compactified moduli of elliptic curves, referred to
as modular forms. Such functions are typically presented in three ways [Sil94,
Section I.1, Remark 3.3]:

1. A modular form f of weight k is a function on choices of lattice A € C
with the property f(c-A) = c~%f(A) and which extends to a meromorphic
function at span{-+i - 0o, 1}.

2. Selecting a basis {7, 1} for the (possibly positively rescaled) lattice A, f can
be understood as a function of 7 € b satisfying f(M - 7) = (cr +d) ¥ f(7)
and extending to a meromorphic function at 7 = +i - co.

3. Using periodicity against SL2Z and meromorphicity at 7 = +i - 0o, the
27T

g—expansion of f is its Fourier series, written in terms of g = e as a
bounded-below sum Y07 a,q".!

We will also be interested in functions on a versal elliptic curve, called Jacobi
forms [EZ85, Section 1.1], modeled as functions on C x b equivariant for SLoZ x Z2.
Such functions again can be parameterized in terms of A, 7, or gq.

Example 2.1. For k > 2, the k** Eisenstein series G}, is the (quasi’)modular
form defined by the lattice sum [Kat77, Equation 2.2.5]

GﬁAﬁ:§:£ﬁ

AEA*

It is evidently modular of weight k. Note that if k£ is odd, the sum telescopes to
zero. In the even case, the g—expansion of Goy is

(2k — 1)!

(2k=1)! ~ Bag
(2mi)2k

- Gar(q) = -5 T2 > o1 (i)e
=

where Boy, is the 2k Bernoulli number, defined by >.°7  B,z" = ——7, and

n=0

where oa,-1(j) = X4, d?~1 is the divisor-sum function [Kat77, Equation 2.4.8].

11t is not trivial to discern when an arbitrary g—series is the g—expansion of a modular form.
2G(7) does not quite transform as a modular form, but instead acquires an extra summand.



FEzample 2.2. The Weierstrass o—function is defined by [Sil94, Proposition 5.4.a]
z z 1 z\2
e TL[0-D) e (G 6))]
op(z) =z H {( 3 exp()\+2 \ ﬂ
AEA*

Among other properties, it is designed so that its logarithm becomes a generating
function for Eisenstein series [Kat77, Equation 2.2.7]:

logz —logop(z) = Z (27;7;;2)" . <((7;m)13' 'Gn(A)> .
n=3 ’

We will need a product formula for its g—expansion [Sil94, Theorems 6.4, 6.3.b]:

271 - 0g(2) = exp <;(2ﬂ'i -2+ Gal(q) - z2)> (1 —u)-

where u = e~ 2™%%, Lastly, the second logarithmic derivative of ¢ is named the

Weierstrass p—function [Sil94, Proposition 5.4.c]:
d2
pa(z) = 72 logoa(2),

which is a meromorphic Jacobi form of index 0 and weight 2.

2.2 Résumé on elliptic cohomology

In this subsection we recall some basic elements of complex orientation theory.

Definition 2.3. Let R be a homotopy ring spectrum. The following two pieces
of data are equivalent:

1. A complex orientation of R is a homotopy ring map MU — R from the
complex bordism spectrum [Ada74, Lemma 1.4.6].

2. A coordinate is a class £ € R?CP> which restricts to 21 € R%2S? along
5% ~ CP' — CP™ [AdaT74, 1.2.1].

A coordinate induces an isomorphism R, [{] — R*CP*°. The Kiinneth formula
then gives an isomorphism R*(CP* x CP*) ~ R, [, &.] where & and &, are the
pullbacks of £ along the two projections. Let p: CP*™ x CP>* — CP* be the
multiplication map classifying the tensor product of line bundles. The formal
group law F(&;,€,) is defined to be the bivariate power series associated to the
element p*¢ [Ada74, Lemma 1.2.7]. We often denote it by & +5 &,

Ezample 2.4. Note that MU is a connective ring spectrum with 7oMU = Z, so
the Postnikov truncation functor induces a ring map MU — Z. Thus, if R is a
Z-algebra, there is a canonical orientation MU — Z — R. We will refer to this
as the additive orientation of R, as its group law is F(x;,,) = x; + ;.



Ezample 2.5. Write 7,KU = Z[3%], m.KUrate = Z[3F][q] with |3] =2, |q| = 0.
e The Todd orientation wrq: MU — KU has coordinate [Ada74, 1.2.3]
érq = (1 — [L]) € KU?CP™.

e The Witten orientation wwit: MU — KUr,te has coordinate [Zag88, (6)]

(1—[L]g")(1 — [L~1]¢
Ewie =B N1 —[L H 1_qj)[ ]Q)GKUTMC(C]P’OO.

For later convenience we also define the degree zero element s := B&14.
Remark 2.6 ([AHSO1, Section 2.7]). An elliptic cohomology theory is a complex-
oriented theory with an isomorphism between its formal group law and that of
some (possibly singular) elliptic curve. KUrate can be understood as an elliptic
theory, with formal group law inherited from the Tate curve, as can KU via the
nodal cubic at the center ¢ = 0.

Definition 2.7 ([Ada74, Corollary 1.7.15]). Let w: MU — R be an orientation,
which begets an orientation wg: MU — R ® Q. Since R ® Q is a Z-algebra,
Example 2.4 endows it with an additive coordinate x. Writing &, for the
coordinate so associated to wg, it can be expressed in terms of 2 as a power
series of the form exp,(z) := &,(z) = = + O(z?). This series is called the
exponential of the formal group law F,, associated to w because it satisfies

expw(xl) +Fu.) expw(xT) = eXpw(xl + xr)'
Ezample 2.8 ([Hir66, Chapter 3]). The exponential of the Todd orientation is
exprg(z) =1 (1 —e F7).

Therefore we have

o}

SRS S e Prgl)(1 — efrq)
s~ H (1—¢7)? '

Definition 2.9 ([AHRD, Section 3.4]). The nepers of an orientation w: MU — R
are the elements N € 7, R ® Q defined by the formula

T OOJ,‘"
log [ ———— :§ Z_ . NY,
°g<expw<x>> ol

n=1

exXpyyig(2) =

When R has a periodicity element 3 € 7y R, meaning 7, R = (7o R)[3%], it will
often be convenient to work with the degree zero element 87" N instead of N.

Remark 2.10 ([AHRb, Proposition 3.12]). The division of the two Thom classes
for the universal line bundle L — CP is referred to as the Hirzebruch series
of w. One can form the same division of Thom classes for any vector bundle,
and the neper N¥ is so obtained by the bundle over S$?" corresponding to a
generator of 7y, BU.



Next, we outline a construction for getting new orientations from old ones,
due to Ando, French, and Ganter [AFGO8]. First, we recall a fundamental piece
of homotopy theory.

Definition 2.11 (e.g., [GM95], [NS18]). Let R be a complex oriented ring
spectrum with coordinate v. The Tate fized-point spectrum R'T is the ring
spectrum obtained by inverting the element ~ in the ring spectrum RF™ . In
particular m,R'T is the Laurent series ring R.((7)), and there is a unit map
u: R — R'T of ring spectra, which induces the obvious inclusion R, — R.((7))
on homotopy groups.

Definition 2.12 ([AFGO08]). Let w: MU — R be a complex orientation with
its induced isomorphism 7, R‘T ~ R, (()). Define the unit orientation of R'T as
the composite
MU % R % R,
and let £ and +p denote the corresponding coordinate and formal group law.
Define the sharped orientation w®: MU — R'T to be the ring map associated to
the coordinate
£
E+Fy

Let y be such that exp,,(y) = 7. Then the sharped exponential satisfies

exp,, ()

exp,s (2) = exp,, () - m~

Remark 2.13 ([AFGO8, Sections 6-7]). The Jacobi orientation arises as the sharp
construction applied to the Witten orientation. On homotopy, it takes values in
meromorphic Jacobi forms of index 0.

2.3 Résumé on E_ —rings

Whereas in classical algebra commutativity is a property of a ring and maps
of rings are automatically compatible with any commutativity present, a ring
spectrum in homotopy theory requires extra data to witness its commutativity, as
do maps of commutative ring spectra. A ring spectrum with such extra structure
is called an E.,—ring, and such a map an E.,—ring map. The complex bordism
spectrum MU is naturally an Eo-ring ([Lew78], [May77, Chapter III]), and thus
if R is an E,,—ring one can ask when a complex orientation MU — R admits
an E.,—structure. This question has received much interest and has seen recent
progress ([AHRD], [HL18], [HY20], [Bal23], [BSY24], ...), but it is usually quite
difficult—the number of known [E.,—orientations is small, the crown jewel of
which is the string orientation of tmf.
Our interest comes from a result of the first author:

Theorem 2.14 ([CL25, Theorem 5.14]). The sharp construction of Defini-
tion 2.12 sends Eo,—orientations to E.,—orientations. L]



Therefore the sharped string orientation (or any of the handful of E,—orientations
it begets, cf. Theorem 2.20) automatically admits this extra E,—structure, and
we would like to understand it in detail. Ultimately, we will conclude that it
entails the congruences advertised in the introduction.

Let us describe others’ pursuit of the program to express this E,.—structure
in a manageable form for palatable target rings. There is a distinguished
class of spectra, called K(1)-local, whose Eo,—rings carry an extremely nice
theory of cohomology operations, controlled by an essentially unique operation
P [BMMS86, Chapter IX]. A key insight of Ando, Hopkins, and Rezk is that if
R is K(1)-local, then an E-structure on an orientation w: MU — R is well
captured by its interaction with ¥?. Our rings of interest, KU and KUfrgte,
become K (1)-local after p—completion. Their ¢)? maps are as follows:

Example 2.15 ([Ada62, Theorems 5.1.iii and 7.2]). Upon p—completion, the Todd
and Witten orientations of Example 2.5 induce identifications

m(KU)p = ZIBF](1), e (KUTee)p = Z[B*[a)(£))7

where we have adjusted the Laurent element ¢t := 8~ into degree 0 (cf. Defini-
tion 2.11). The operations ¢? are the ring homomorphisms determined by

PP(t) =1-(1-1), VP (q) = ¢, YP(B) = pp-
For a homotopy element f,(t) - ¥ € o, KUK, = Z[q] (t)p{B*} we then have
¢p(fq(t) /Bk) :pk : fqP(l - (1 - t)p) ﬂk
We measure the interaction of ¥P with the orientation w like so:

Definition 2.16 ([AHRb, Proposition 7.10]). Pick any ¢ € Z; \ {£1}. The
moments of an orientation w: MU — R of a K(1)-local ring are the elements

P
My =(1-c") <id - d;) (N¥) € m,R® Q.
As with Definition 2.9, when R has a periodicity element 5 € moR, it will often

be convenient to work with the degree 0 element " M. However, one has to
take a bit of care, since ¥? () need not be equal to 8 (as Example 2.15 shows).

Remark 2.17 ([Rez06]). The operator id —p~11P is part of a more general theory
of logarithmic cohomology operations.

We can now state a key result of Ando-Hopkins—Rezk:

Theorem 2.18 ([AHRbD, Theorem 6.1], see also [AHRa], [Pet19, Appendix A.4]).

Let w: MU — R be an Eo,—orientation of a K(1)-local ring R which is flat over
KU;. The moments M., belong to an R.-valued p-adic moment sequence. [

Remark 2.19 (JAHRD, Lemma 7.14, Proposition 14.6.2, Section 3.5], [Mil82]).
Orientations are automatically suitably compatible with the unit map of the
ring spectrum, which manifests in the moment sequence as the identity

: w . w _ . —1 —1
jlggoM(pfl)pj =My =p “logc’ .



Finally, we need some existing E,,—orientations of KU and KUr,te to which
we will apply Theorem 2.14 to get E—orientations of (KU")/ and (KU%,.)5,
and then further apply Theorem 2.18 to get p—adic moment sequences. We

record the following theorem.

Theorem 2.20 ([AHRDb, Theorem 10.3, Proposition 10.10]). After p—completion,
the orientations of Example 2.5

wrq: MU — KUQ, wwit: MU — (KUTate);\
admit Eo,—structures. O

Remark 2.21. To be precise, the statement of Proposition 10.10 of [AHRD] pro-
duces an Ey—structure on the MU(6)—orientation associated to wyyyi,. However,
the same proof, with the target ring changed to m,KUrate, shows that wyyit itself
admits an E,—orientation. Alternatively, one can use obstruction theory along
the Whitehead tower of bu to push the E —structure from MU(6) to MU.

3 Proofs of the Main Theorems

We now apply this machinery to the sharped orientations of (Tate) K-theory
from Theorem 2.20 to produce p—adic moment sequences. It will be convenient
to fix the following notation:

2miz = ¢ = —log(l — s) = —log(u), 2mia =y = —log(l—t)=—1log(v).

Remark 3.1. While s agrees with the element defined at the end of Example 2.5,
x does not quite agree with the additive coordinate of previous sections. Instead,
it is the degree 0 element gotten by using the periodicity element 5. This slight
abuse of notation is well worth it, as the formulas that follow would otherwise
be infested with powers of 5.

Throughout, let ¢ € Z,* \ {£1} be a choice of p-adic unit.

3.1 Todd and Todd’

Lemma 3.2 ([Kob84, Theorem 7.2], [AHRD, Proposition 10.2]). There is a
p—adic moment sequence which in positions n > 1 is given by
-B,

(=) (=p ) =,

where B,, denotes the n'™ Bernoulli number.

Proof. Using Example 2.8, the nepers associated to the Todd orientation are

X n
E T -Ngd = log (E) = log ‘ .
n! s 1—e®

n=0




The series expansion of the right-hand side follows from:
n—1

T > T
. = —B,——.
ez —1 Z "ol
n=1

We then calculate the moments (cf. Definition 2.16) and find that they are the
claimed sequence, which is a p—adic moment sequence by Theorem 2.18. O

8

4, _ 1
dx 8 o T

Proof of Main Theorem B. Combining Example 2.8 and Definition 2.12, the
nepers associated to the Todd? orientation are

— " 1—e®(1—t
Zi,NEdnzlog (£>+10g M .
n! s t
n=0
The first summand is the subject of Lemma 3.2, so we focus on the second:
1—t71(1—e%) a2 e T (m
1 —_— | =—x - — — —1)/ "
o (=1 YT e ()

The inner sum is exactly the iterated forward finite difference A™[r"](0). Apply
Theorem 2.18 to produce the p—adic moment sequence:

Td* _ yTd _ () _ n —~ ATEM0) (o P!
Mt = >(§; el u—wl—wmm>>'

The binomial raised to the m™ power does not naively expand, as (1 — t)P is
not a topologically nilpotent element of 7, (KUtT)Q. However, by defining ¢ such
that (t7! — 1)? = t7P + (—1)? + p(, we may rewrite this as

Td¥ _ pyTd _ (] _ o - A™[(0) (o pn—gmpm
M M= (=) 30 ST <t «Dmlpgm>,

m=1

which does define a convergent series in 7, (KUtT)Z/,\. O

Remark 3.3. When m > n, the 7™ term in N,?d” vanishes for two reasons: the
m—fold forward finite difference operator annihilates r™, and the term (1 —e=%)™
appearing in the expansion of log(1 — t~1(1 — €?)) has z—degree at least m.

3.2 Witten and Witten’
Lemma 3.4 ([Kat77, Lemma 3.5.6], [AHRD, Propositions 10.9-10]). There is a

Z[[q}]f;valued moment sequence which in even positions 2n > 1 is given by

(1—c®)-(2n —1)!
(2mi)2n

) (G2n(Q) - p2n_1G2n(qp))

and which vanishes in odd positions 2n +1 > 1.

10



Proof. The exponential for the Witten orientation of Tate K—theory in Exam-
ple 2.8 shows the associated sequence of nepers to be

— 2" wi x - (1-¢7)?
2 NWYit — o | —— 1 : :
T;l nl n og <1 — u> + log Jl;[l (1 —qu)(l _u—lq])

The first summand is felled by Lemma 3.2, so we concentrate on the second:

0l (1—qj)2 - 1 id id —d id _d
1 — | = —(—2¢’ J T4 g%
08 H(l_qu)(l_u—lqj) sz( ¢ raqe +q’%e™)
7j=1 j=1d=1
=2) Y doan 1))
(2n)! 4
n=1 j=1
Comparing with Example 2.1 shows
- 2n —1)!
NWlt _ (7 A n .
n (27‘(’2)2n 2 (q)

All that remains is to calculate the moments MV* and apply Theorem 2.18. [

Proof of Main Theorem A. Again, combining Example 2.8 and Definition 2.12,
the sharped Witten nepers are given by

ST NN log (w) +log (expvvtw) |
o (2 expyyit (2) expyyit (Y)

The first summand is felled by Lemma 3.4, so we focus on expanding the second.
Using Example 2.2, the Witten exponential can be written in terms of o, as

o T 1 Ga(q9)
eXpWit(fL') = 2m Oq (Tm) exp ( 5(1}' mfﬁ 5

and hence that second summand can be written as

log (expwlt(x+y)> = (—1 4 G2l0) log(1 —t)) i

exPyyi¢ () 2 " (2mi)2 2(2mi)?
N | oy (log(1 =)
A S ( F-)
+n§::1 n!  (2m)" g < —2mi ’

The moments are then calculated to be exactly the expressions appearing in the
Theorem statement, so Theorem 2.18 finishes the proof. O

4 Further directions

Remark 4.1. The recipe followed here applies to any other E,,—orientations the
reader may have on hand.

11



e [AHRD]: The spectrum TMF is a topological incarnation of the moduli
stack of elliptic curves over a general base. Its homotopy, analogous to the
cohomology of the moduli stack, brings to light certain torsion phenomena
not visible in the homotopy of m,KUrste. Though TMF is no longer
complex orientable, there is a o—orientation which suitably refines the
Witten orientation of KUr,e and is itself E.,, suggesting one possible
starting point for a generalization of our results.

e [HL16, Will5, Sen23]: Topologists have also constructed variations on
TMF for other congruence subgroups and other levels (though lifts of
the o—orientation have only been considered in limited situations). The
number theory literature makes substantial use of these other stacks, and
so an enrichment of our results to that setting would provide much better
contact.

e [LY25]: Topologists have recently constructed a spectrum TJF which
refines the theory of Jacobi forms analogously to how TMF refines the
moduli of elliptic curves. This perhaps forms a more appropriate target
for parametric Jacobi orientations than TMF'T. (We thank Yamashita for
bringing this to our attention.)

e [MT91, Appendix II]: Mazur and Tate construct functions analogous to
the classical Weierstrass function, but over other adic rings and specified
by quite different formulas. Since TMF lies over a general base, the o—
orientation suitably restricted may shed light on these other o—functions.

e [Bal23], [BSY24]: Morava E-theories are known to carry E.,—orientations,
and the relevant logarithms bear a number-theoretic description [Rez06,
1.10]. To our knowledge, the associated congruences have not been
explored—nevermind their sharped versions.

Remark 4.2. Number theorists have made strikingly productive use of p—adic
interpolation in the context of special values of L—functions—to pluck some
examples from a hat, see [Kat76, Kat77, Kat80, Yag82, MTT86, GS93], though
this list is hardly exhaustive. At least to the authors’ untrained eyes, these
results appear to require a greater parametricity (e.g.: in level, in ground ring)
than is offered by our result on the standard Weierstrass elliptic functions. Still,
we hope that it can perhaps be put to similar use in some more limited context,
or that it inspires subsequent production of broader congruences.

Remark 4.3. It is not clear to the authors how to unify the many derivatives
appearing in this document. For example, it is tempting to interpret the finite
differences appearing in Main Theorem B as belonging to a kind of pairing:

(log (o)) = amo),

where the role of ¢~™ is to select the iterated finite difference operator A™|,.—¢
and x" to select the test polynomial ™. This interpretation does not obviously
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extend to the positive {—terms appearing in NWi* | but some total interpretation
seems surely possible.

Remark 4.4 ([Sof97, Section 3]). Sofer explores a construction which extracts
from a Jacobi form a p—adic measure valued in modular forms, using formulas of
similar flavor to ours but “with one fewer variable”. It could be interesting to
have some identification of the measure in Main Theorem A in those terms, or
to generalize their construction to produce measures valued in Jacobi forms, or
even to see the limitations of any such generalizations.

More concretely, it would be interesting to see topology-free proofs of the
congruences described in our Main Theorems. One specific opportunity for
improvement is that Ando, Hopkins, and Rezk’s manual analysis allows them to
“halve” the Mazur measure [AHRD, Section 10.3]. Figure 3 and Figure 4 suggest
that this is possible for the measure constructed in Main Theorem A. Perhaps
this is accessible through topology, but it is likely equally accessible directly.

Remark 4.5. The three factors appearing in Lemma 3.2 have discernable prove-
nances in both homotopy theory and in number theory. In homotopy theory,
they belong to the finite Adams resolution of the K (1)-local sphere, the Rezk log-
arithm, and the characteristic series of the Todd orientation. In number theory,
they arise from the regularization of a distribution to a measure, the restriction
to Z, to perform p-adic interpolation, and as special values of the (—function.
It would be deeply interesting to have a tighter correspondence between these
three pieces. The Main Theorems also provide a new proving ground for any
such analogy, which should additionally assign a measure-theoretic meaning to
PP(t) =1—(1-t) = [plg, (0).

Remark 4.6. In its incarnation as an operation on E.,—rings (cf. [CL25]), the
sharp construction is part of a more general theory of E.,—orientations of Tate
objects. For example, this theory also subsumes the Frobenius homomorphism
of [NS18]. One wonders what the moment sequence associated to the Frobenius
twist of the Witten orientation is.
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10 t~! t=2 3 t=4 t= t=6

A{Eﬂ” ---00005 ---22203 ---00003 ---00103 ---01005 ---02005 ---10005
MF4 | 011025 221105 ---01205 ---12003 ---20005 ---10003 --- 11003
MZIE | ..00005 ---02003 ---10003 ---11003 ---00003 ---00005 ---00003
Al}d“ -.+10225 ---21203 ---00103 ---02003 ---22003 ---00005 ---0
MZFE | ...00003 ---10105 ---11005 ---11203 ---21005 ---22003 --- 0
MPE | .22125 ---11005 ---02005 ---00003 ---20005 ---00005 ---20
MZFA | .. 00005 ---20205 ---10005 ---22103 ---11005 ---22003 ---10003
MFY | ..20025 222105 ---10205 ---22003 ---00005 ---10003 --- 11003
MZFE | ...00003 ---20005 ---00003 ---10003 ---00005 ---00005 ---0000s
ME | .. 02225 212205 ---02105 ---22003 ---22005 ---00003 --- 10003
MZEd | ...00003 ---11103 ---11005 ---10203 ---11005 ---02003 ---00003
Alﬁ?“ ...11123 ---22003 ---11003 ---00003 ---10005 ---00005 ---1000s
MES | . 00003 ---11205 ---20003 ---21103 ---21005 ---12003 ---10003
MIA | ...22025 ---00103 ---12205 ---02003 ---10005 ---10003 ---11004
ME | ...00005 ---01005 ---20005 ---02003 ---00005 ---00003 ---00003
ME | .. 01225 210205 ---11105 ---12003 ---22005 ---00003 ---20005
ME | ...00005 ---12103 ---11005 ---02203 ---01005 ---12003 ---00003
ME | .. 00125 ---10005 ---20005 ---00003 ---00005 ---00003 ---0000s
MEEF | ...00005 ---02205 ---00003 ---20103 ---01003 ---02005 ---10003
AJ%?“ --.01023 ---01103 ---21203 ---12003 ---20005 ---10005 ---11005
MZEE | ...00003 ---12005 ---10003 ---01003 ---00005 ---00003 ---0000s
MIZ | .. 00225 ---01203 ---20105 ---02003 ---22005 ---00003 ---00003
MZEE | ...00005 ---20105 ---11005 ---01203 ---21005 ---22003 ---00003
MES | 012125 ---21005 ---22005 ---00005 ---20005 ---00003 ---20003
MZEF | ...00003 ---00203 ---10003 ---12103 ---11005 ---22005 ---10003
MEE | .. 10025 ---02105 ---00205 ---22003 ---00005 ---10003 ---11003
MEE | ...00005 ---00003 ---00003 ---00005 ---00005 ---00005 ---00003
AJ;E“ 2022225 -.-22203 ---22103 ---22003 ---22003 ---00005 ---10003
MES | .. 00005 ---21105 ---11003 ---00203 ---11005 ---02003 ---00003
MIF | ...01125 ---02005 ---01003 ---00005 ---10005 ---00005 ---10003
MZEd | ...00005 ---21203 ---20005 ---11103 ---21005 ---12003 ---10003
MEF | ...12025 ---10103 ---02203 ---02003 ---10005 ---10005 ---11003
MZEF | ...00003 ---11003 ---20005 ---22003 ---00003 ---00005 ---00003
MEd | ...21225 -..20205 ---01105 ---12003 ---22005 ---00003 ---20003
MEEF | ...00005 ---22103 ---11003 ---22203 ---01003 ---12005 ---00003
MI4 | ...20125 ---20005 ---10005 ---00003 ---00005 ---00003 ---0000s
MEEF | ...00003 ---12203 ---00003 ---10103 ---01005 ---02005 ---10003
MEF | ..21025 -+ 11105 ---11205 ---12003 ---20005 ---10005 ---11003

Figure 1: A range of ternary expansions of the 3-adic Todd* moments at ¢ = 1+p.
Main Theorem B with test polynomial p~*(r®~1P" — 1) shows that the 7*® digit
within a column is periodic with periodicity (p — 1)p’. The colors are there to
help the eye catch the vertical patterns.
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lem 16 45 4 3 12 1
gt | --22205 22205 22203 ---22205 22205 22103
g% | 20105 20203 --21003 ---21103 ---22003 ---21003
¢ | 22205 222053 22205 22203 22203 --22103
g* | 12105 ---20003 --11205 ---22103 ---20203 ---11103
¢® | 01205 02105 12005 ---02205 21003 +--12003
¢% | 20105 20205 21003 ---21105 22005 --21003
g’ | 00005 00203 --11105 ---12003 ---20103 ---1020s3
¢® | 00205 02103 --22005 ---10203 ---11003 ---2200s
¢° | 22205 22203 22205 ---22203 22203 --22103

M;}Vw” 16 45 4 43 12 1
gt | --20205 202053 20203 ---20205 20205 11103
¢* | 12105 01203 --21005 ---10103 ---12003 ---0100s
¢ | 20205 20203 20205 ---20203 20203 ---1110s
¢* | 21105 10003 --02205 ---01103 ---21203 ---20103
¢° | 02205 01105 --120053 ---00205 ---01005 ---02003
¢% | 12105 01205 21003 ---10105 ---12005 ---01003
g’ | 10005 11203 00105 ---02005 ---12103 ---0120s
¢® | 01205 11103 22005 ---11203 --21003 ---1200s
¢° | 20205 ---20203 20205 ---20203 ---20203 ---11103

M}?gltn t6 t5 t4 t3 t2 tl
gt | --02205 02205 02203 ---02205 02205 12103
¢* | 10105 00203 ---21005 ---11103 ---22003 ---21003
¢ | 02205 02203 02205 ---02203 02203 --1210s
g* | 02105 ---20003 --21205 ---12103 ---00203 ---01103
¢ | 11205 22105 12003 ---12205 21005 --12003
¢% | --10105 00205 21003 ---11105 22005 --21003
g’ | 00005 10203 --01105 ---12003 ---10103 ---2020s
¢® | 10205 ---22103 --22005 ---20203 ---11003 ---2200s
¢® | 02205 02203 02205 ---02203 ---02203 ---12103

Figure 2: Some 3-adic Witten! moments at ¢ = 1 + p, in a range of ¢t and
g—degrees. Congruences here relate the colored digits across different tables
rather than within columns. The relevant test polynomials are (7~ 17 — 1)

and p3(r=1r" 1),
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tO t71 t72 t73 t74 t75

MEE [...0000000 ---11111105 ---11111105 ---11111003 ---11110003 --- 11100005
MFE | ...01010105 ---11110005 ---11110005 ---1100000; ---01100005 - -- 1000000,
MZFE | ...0000000; ---11001105 ---1100110; ---1111100; ---01010005 - --1100000,
MPE | ... 1011010, ---0110000; 01100003 - -- 1000000 - -- 11000005 - - - 00000005
MT | ...00000003 ---00011103 ---00011103 ---11111003 ---10110005 - -- 1010000,
MZFE | ...00010105 ---01010005 ---01010005 ---01000005 - --00100005 - -- 1000000,
MZTE | ...00000005 ---11101105 ---1110110; ---1111100; ---00010005 - -- 10000005
MZTE | ..0111010, -~ 11000005 - -- 11000005 - -- 00000005 - -- 10000005 - - - 0000000,
M | ...0000000, ---00111105 ---00111105 ---11111005 ---01110005 - --0110000,
MEE | ...1101010, ---10110005 ---10110005 --- 11000005 ---11100005 - - - 1000000,
MEE | ...00000005 ---00001105 ---0000110y ---11111003 ---11010005 - --01000005
MEE | ...0011010, ---00100003 ---0010000; - -- 1000000 - --01000005 - - - 00000005
MES | ...00000005 ---01011105 ---01011105 ---11111005 ---00110005 - --0010000,
MEE | ...10010105 ---00010005 ---00010005 - --0100000 ---10100005 - -- 1000000,
M | ...0000000; ---0010110; ---00101103 ---11111003 ---10010005 - -- 0000000,
MES | ...1111010,  ---1000000, - -- 10000005 - - - 00000005 - -- 00000005 - - - 0000000,
A4§P” ---0000000g ---0111110g ---01111109 ---11111005 ---1111000g ---11100004
Afﬁ?“ ---01010105 ---01110005 ---01110005 ---11000005 ---01100003 ---1000000
MEE | ...00000003 ---0100110; ---01001103 ---11111003 ---01010005 - -- 11000005
A4§§” ---10110105 ---11100005 ---11100005 ---10000005 ---11000002 - --0000000,
MZEE | ...00000005 ---10011105 ---1001110; ---1111100; ---10110005 - --10100005
MEE | ...0001010, ---1101000; ---1101000; ---0100000 - --00100005 - -- 10000005
MZEF | ...00000005 ---01101105 ---01101105 ---11111005 ---00010005 - --1000000,
MZIE | ...0111010, ---01000005 - --01000005 - --00000005 - --10000005 - - - 0000000,
MZEE | ...00000005 ---10111105 ---1011110; ---1111100; ---01110005 ---01100005
MEE | .1101010, ---00110005 ---0011000 - -- 11000005 - -- 11100005 - - - 1000000,
MZEE | ...00000005 ---10001105 ---10001105 ---11111005 ---11010005 - --0100000,
MZEE | ...0011010, ---10100005 ---10100005 - --10000005 - --01000005 - - - 0000000,
MEE | ..00000003 ---1101110; ---11011103 ---11111003 ---00110005 - -- 0010000,
MZEE | ...1001010, ---10010005 ---1001000, - --01000005 - --10100005 - - - 1000000,
MZEE | ...00000005 ---10101105 ---10101105 ---11111005 ---10010005 - --0000000,
MZEE | .. 1111010, ---00000005 - --00000005 - --00000005 - -- 00000005 - - - 0000000,
MZE& | .. 00000003 ---11111105 ---11111103 ---11111003 ---11110005 - -- 11100005
MZIE | ...01010105 ---11110005 ---11110005 ---11000005 ---01100005 - -- 1000000,
MZEE | ...00000005 ---11001105 ---1100110; ---1111100; ---01010005 - --11000005
MEE | .1011010;  ---0110000; ---01100005 - -- 10000005 - -- 11000005 - - - 0000000,

Figure 3: A range of binary expansions of the 2-adic Todd* moments at ¢ = 1+p.
Main Theorem B with test polynomial 2~ (*2) (92" — 1) shows that the 0, 15¢,
and 2°¢ digit columns are 2-periodic, and then after those the " digit column
is 29~ periodic.
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M;Nit“ 16 5 4 +3 2 #1
gt | 1111109 1111105 1111105 --111110g --1111105 ---1111004
¢ | 1111105 1111105 1111109 1111109 1111109 «1111004
g% | 0001109 ---0101005 ---1000009 ---101000g ---1110009 ---1100004
g*|--1111109 1111105 --1111105 --1111109 --1111109 --1111004
g® | 0110109 ---0000005 ---1111005 ---100100g ---1101005 ---1010004
g% | 0001105 ---0101005 ---1000005 ---101000g ---1110005 ---1100004
M?}Nit“ 16 5 4 3 12 1
gt | --1001105 1001105 ---1001105 ---1001105 ---1001104 ---0011()()2
¢? | 1001105 1001105 1001104 ---1001105 ---1001105 ---00110(
g | 0011105 --1101005 ---110000 ---0110009 1010005 ---010( ()
g* | 1001109 1001105 1001109 --1001109 ---1001109 ---0011004
¢® | 1100109 ---1100005 ---0111005 ---1001009 ---1101005 ---1010004
g% | --0011109 ---1101005 ---1100005 ---0110009 ---1010005 ---0100004
MBVVit” 46 15 14 43 12 1
gt | 0011105 0011105 0011104 ~-00111()2 --0011109 ---0111004
g% | --0011109 0011105 ---0011105 ---00111 --0011109 ---0111004
¢ | --0101105 ---0101005 ---0000005 ---0010( ()2 ---0110004  ---1100004
g* | --0011109 0011105 ---0011105 ---0011105 ---0011104 ---0111()()2
¢® | 0010105 ---1000005 1111004 ---1001005 ---1101005 --1010004
¢% | 0101105 --0101005 ---0000004 ---0010005 ---0110005 --1100004
MQWit11 16 5 4 3 12 1
gt | 0111109 0111105 0111105 --011110 0111109 ---1111004
g% | 011110, ---01111()2 -:011110o9 ---0111109 ---01111()2 ---1111()()2
¢ | 1001105 --0101005 1000004 ---1010005 ---1110( ---1100(
g* | 0111104 “-01111( -0111109  ---0111104 ‘--01111( --~1111()
g® | 1110109 ---0000005 ---1111009 --100100g ---110100 ---1010004
g% | -+1001109 ---0101005 ---1000005 ---101000g ---1110005 ---1100004

Figure 4: Some 2-adic Witten® moments at ¢ = 1 + p, in a range of t— and
g—degrees. Congruences here relate the colored digits across different tables
rather than within columns. Congruences here relate the colored digits across
different tables rather than within columns. The relevant test polynomials are

p2(r? — 1), p~4(r* — 1), and p~°(r® — 1).
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