
NOTES ON STOKES’ THEOREM

In class, I gave / tried to give two examples, but because of time constraints and in-presentation errors, we finished
neither. I wanted to make sure you had the chance to see both arguments in full. I did draw all the necessary pictures
in class, and so you can refer to your notes for those; I won’t reproduce them here.

1. FIRST EXAMPLE

Consider the vector field ~F =

 −y
x2+y2

x
x2+y2

!

, and unit circle C centered at the origin. By picking the parametriza-

tion C (t ) =
�

cos t
sin t

�

, we can compute
∮

C F · d r as follows:

∮

C
F · d r =

∫ 2π

0

�

− sin t
cos t

�

·
 

− sin t
cos2 t+sin2 t

cos t
cos2 t+sin2 t

!

d t

=
∫ 2π

0
1 · d t = 2π.

One thing that we spent time talking about in class is that Green’s theorem does not apply to this integral. The
problem is that the vector field is not defined at the origin, and so we can’t perform the double-integral over the
interior of the disk. Let’s instead consider the 3-dimensional vector field

~G =









−y
x2+y2+z2

x
x2+y2+z2

0









.

If we set z = 0, so we’re working in the xy-plane, we recover the vector field F . We stuck the z2 into the denominator
to ensure that G is also only undefined at the origin, but it has a good value everywhere else. In 3-dimensional space,
unlike in 2-dimensional space, we can draw a surface whose boundary is the circle and which misses the origin: for
example, we can let the surface Σ be the hemisphere of radius 1, centered at the origin, with b (Σ) = C . Then,
Stokes’ theorem asserts

∮

C
F · d r =

∮

C
G · d r =

∫∫

Σ
∇×G · d S.

Let’s test Stokes’ theorem in this case by computing the right-most expression.
To do that, we have to parametrize the surface: adapting spherical coordinates to our situation gives

Σ(φ,θ) =







sinφcosθ
sinφ sinθ

cosφ






, 0≤ θ≤ 2π, 0≤φ≤

π

2
.

Then, d S is given by the formula

d S =
∂ Σ

∂ φ
×
∂ Σ

∂ θ
=







cosφcosθ
cosφ sinθ
− sinφ






×







− sinφ sinθ
sinφcosθ

0






=







sin2φcosθ
sin2φ sinθ
sinφcosφ






.

We can quickly check that this is the outward-facing orientation. We also have to compute∇×G:

∇×G =







∂ /∂ x
∂ /∂ y
∂ /∂ z






×









−y
x2+y2+z2

x
x2+y2+z2

0









=
1

(x2+ y2+ z2)2
·







2x z
2y z
2z2






=







2sinφcosφcosθ
2sinφcosφ sinθ

2cos2φ






.
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Then,

∫∫

Σ
∇×G · d S =

∫ 2π

0

∫ π/2

0







2sinφcosφcosθ
2sinφcosφ sinθ

2cos2φ






·







sin2φcosθ
sin2φ sinθ
sinφcosφ






dφdθ

=
∫ 2π

0

∫ π/2

0
2 · (sin3φcosφcos2θ+ sin3φcosφ sin2θ+ sinφcos3φ)dφdθ

=
∫ 2π

0

∫ π/2

0
2 · sinφcosφdφdθ

=
∫ 2π

0

∫ π/2

0
sin(2φ)dφdθ= 2π.

So, we see that they match. The moral of this example is that Stokes’ theorem applies where Green’s theorem
gets stuck. Namely, moving a point from the center of a planar figure causes it to become non-simply-connected,
whereas a simply connected solid with a point removed from the center remains simply connected.

2. EXAMPLE 2

Now, let’s compute the line integral
∮

C F · d r , where F is defined by

~F =







y3

x
z







and C is implicitly given by the pair of constraints

C =
�

x2+ y2 = 1,
z = 2+ sin(xy)

�

,

oriented clockwise. The first constraint is the equation of a cylinder, and the second is the equation of some wavy
plane, so their intersection is a wavy circle, hovering above the unit circle in the xy-plane. It’s possible to parametrize
this by taking x = cos t and y = sin t , then but that yields z = 2+ sin(sin t · cos t ), which looks pretty impossible to
integrate.

Instead, we will apply Stokes’ theorem to Σ, the part of the cylinder caught between C and the unit circle D in
the xy-plane. If we orient this cylinder to have an outward-facing normal and D to also be clockwise oriented, then
Stokes’ theorem states

∮

C
F · d r =

∫∫

Σ
∇× F · d S +

∮

D
F · d r.

So, to compute the left-hand side, we are tasked with computing the two integrals on the right. The surface integral
is easy: we compute

∇× F =







0
0

1− 3y2






.

On the other hand, d S onΣ is always a positive multiple of the outward-facing normal, which has no z-component,
and hence the dot product (∇× F ) · d S vanishes identically and

∫∫

Σ∇× F · d S = 0.
What’s left, then, is to compute the line integral around D . Unlike C , D is very simple to parametrize:

D(t ) =







cos t
sin t

0






, D ′(t ) =







− sin t
cos t

0






.
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So, we compute:
∮

D
F · d r =

∫ 2π

0







sin3 t
cos t

0






·







− sin t
cos t

0






d t

=
∫ 2π

0
(cos2 t − sin4 t )d t =

∫ 2π

0
(cos2 t − sin2 t · (1− cos2 t ))d t

=
∫ 2π

0

 

cos(2t )+
sin2(2t )

4

!

d t =
∫ 2π

0

�

cos(2t )+
cos(2t )− 1

8

�

d t

=
�

sin(2t )

2
+

sin(2t )

16
−

t

8

�2π

0

=
π

4
.

Hence,
∮

C
F · d r =

∫∫

Σ
∇× F · d S +

∮

D
F · d r = 0+

π

4
=
π

4
.

The moral here is in the application of Stokes’ theorem: it tells you that if you drag your curve through space,
tracing out a surface behind it, then the line integrals around the start and end loops are related to each other by a
correction factor of this flux integral.
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