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Nested Quantifiers

Example

Translate into English the statement

∀x∀y((x > 0) ∧ (y < 0)→ (xy < 0)).
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The order of quantifiers

Statement When is it true?

∀x∀yP(x , y)
∀y∀xP(x , y)

P(x , y) is true for every pair x , y .

∀x∃yP(x , y) For every x there is a y for which P(x , y) is true.

∃x∀yP(x , y) There is an x for which P(x , y) is true for every y .

∃x∃yP(x , y)
∃y∃xP(x , y)

There is a pair x , y for which P(x , y) is true.

Prof. Steven Evans Discrete Mathematics



Nested Quantifiers
Rules of Inference

Introduction to Proofs
Proof Methods and Strategy

The order of quantifiers

Statement When is it false?

∀x∀yP(x , y)
∀y∀xP(x , y)

There is a pair x , y for which P(x , y) is false.

∀x∃yP(x , y) There is an x such that P(x , y) is false for every y .

∃x∀yP(x , y) For every x there is a y for which P(x , y) is false.

∃x∃yP(x , y)
∃y∃xP(x , y)

P(x , y) is false for every pair x , y .
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Negating nested quantifiers

Example

Use quantifiers and predicates to express the fact that limx→a f (x)
does not exist where f (x) is a real-valued function of a real
variable x and a belongs to the domain of f .
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1.6: Rules of Inference
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Arguments

Definition

An argument is a sequence of propositions. All but the final
proposition are called premises, and the final proposition is called
the conclusion. An argument is valid if the truth of all its premises
implies that the conclusion is true.

Definition

An argument form is a sequence of compound propositions
involving propositional variables. An argument form is valid if the
conclusion is true no matter which propositions are substituted for
the variables.
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Rules of inference

Notation

Another way to write (p ∧ q)→ r is the inference tree

p q

∴ r
.

Rule of Inference Name

p p → q

∴ q
Modus ponens

¬q p → q

∴ ¬p Modus tollens

p → q q → r

∴ p → r
Hypothetical syllogism
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Rules of inference

Rule of Inference Name

p ∨ q ¬p
∴ q

Disjunctive syllogism

p

∴ p ∨ q
Addition

p ∧ q

∴ p
Simplification

p q

∴ p ∧ q
Conjunction

p ∨ q ¬p ∨ r

∴ q ∨ r
Resolution
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Rules of inference

Example

Show that the premises (p ∧ q) ∨ r and r → s imply p ∨ s.

Simp.

Hypo. Syllog.

p ∧ q ∨ r

¬¬(p ∧ q) ∨ r

(¬(p ∧ q))→ r r → s
(¬(p ∧ q))→ s

¬¬(p ∧ q) ∨ s

(p ∧ q) ∨ s

∴ p ∨ s
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Fallacies

The proposition ((p → q)∧ q)→ p is not a tautology. Making this
mistake is called affirming the conclusion.

The proposition ((p → q) ∧ ¬p)→ ¬q is not a tautology. Making
this mistake is called denying the hypothesis.
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Rules of inference for quantified statements

Rule of Inference Name

∀P(x)

∴ P(c)
Universal instantiation

P(c) for an arbitrary c

∴ ∀xP(x)
Universal generalization

∃xP(x)

∴ P(c) for some element c
Existential instantiation

P(c) for some element c

∴ ∃xP(x)
Existential generalization
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Combining rules of inference

Universal modus ponens

∀x(P(x)→ Q(x)) P(a), where a is a particular element

∴ Q(a).

Universal modus tollens

∀x(P(x)→ Q(x)) ¬Q(a), where a is a particular element

∴ ¬P(a).
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1.7: Introduction to Proofs
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Some terminology

A theorem is a statement that can be shown to be true.

Oftentimes, theorem refers to an “important” statement. Less
important theorems are sometimes called propositions.

Less important theorems which are used crucially in the proofs
of other theorems are called lemmas (or lemmata).

A corollary is a theorem that can be established directly from
a theorem that has been proved.

A theorem is demonstrated to be true by a proof.

Proofs include statements called axioms or postulates.
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Direct proofs

Example

Give a direct proof that if m and n are both perfect squares, then
nm is also a perfect square.

(An integer a is a perfect square if there is an integer b with
a = b2.)
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Proof by contraposition

Example

Prove that if n = ab, where a and b are positive integers, then
a ≤
√
n or b ≤

√
n.
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Proof by contradiction

Example

Give a proof by contradiction of the theorem “If 3n + 2 is odd,
then n is odd.”
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Proofs of equivalence

Example

Show that these statements about the integer n are equivalent:

1 n is even.

2 n − 1 is odd.

3 n2 is even.
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Counterexamples

Example

Show that the statement “Every positive integer is the sum of the
squares of two integers” is false.
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1.8: Proof Methods and Strategy
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Exhaustive proof and proof by cases

Exhaustive proofs

Some theorems can be proved by examining a relatively small
number of examples (e.g., considering a truth table). Such proofs
are called exhaustive proofs or proofs by exhaustion, because these
proofs proceed by exhausting all possibilities.

Important remark

A proof by cases must cover all possible cases that arise in a
theorem. It is not sufficient to check just one.
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“Without loss of generality”

Example

Show that if x and y are integers and both xy and x + y are even,
then x and y are both even.
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Existence proofs

Example

Show that there exist irrational numbers x and y such that xy are
rational.
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Proof strategy in action: forward and backward reasoning

Remark

Oftentimes, it is important to employ both forward and backward
reasoning.

Example

Suppose that two people play a game taking turns removing one,
two, or three stones at a time from a pile that begins with 15
stones. The person who removes the last stone wins the game.
Show that the first play can win the game no matter what the
second player does.
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Proof strategy in action: tilings

Example

Can we tile the board obtained by deleting the upper right and
lower left corner squares of a standard checkerboard, as pictured
below?
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