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Sets

Definition

A set is an unordered collection of objects, called elements or
members of the set. A set is said to contain its elements. We use
“a ∈ A” to denote that a is an element of the set A. Likewise, we
use “a 6∈ A” to denote that a is not an element of A.
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Set-builder notation

Another way to describe a set is to use set-builder notation, which
characterizes the elements of a set by the property they must have
in order to be members.

Example

Q+ = {x ∈ R | x = p
q for positive integers p and q}
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Sets

More examples of sets

N = {0, 1, 2, 3, . . .}, the set of natural numbers.

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the set of integers.

Z+ = {1, 2, 3, . . .}, the set of positive integers.

Q = {pq | p ∈ Z, q ∈ Z, q nonzero}, the set of rational
numbers.

R, the set of real numbers.

R+, the set of positive real numbers.

C, the set of complex numbers.
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Intervals

Definition

When a and b are real numbers with a < b, we write:

[a, b] = {x | a ≤ x ≤ b},
[a, b) = {x | a ≤ x < b},
(a, b] = {x | a < x ≤ b},
(a, b) = {x | a < x < b}.

Prof. Steven Evans Discrete Mathematics



Sets
Set Operations

Sets

Definition

Two sets are said to be equal when they have the same elements,
meaning that A and B are equal if and only if the sentence

∀x(x ∈ A↔ x ∈ B)

holds. We write A = B for this sentence.

Definition

There is a special set that contains no elements. This set is called
the empty set or the null set and is denoted by ∅ or by {}.
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Venn Diagrams

Example

A Venn diagram for the set of vowels:

V

a

e

i o

u
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Subsets

Definition

The set A is a subset of B if every element of A is also an element
of B. This is written symbolically as

∀x(x ∈ A→ x ∈ B).

We use the notation A ⊆ B to indicate this relationship.

Note

Note that to show that A is not a subset of B, we need only find
one element x ∈ A with x 6∈ B. This element is a counterexample
to the claim that x ∈ A implies x ∈ B.
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Subsets

“Subset” as a Venn diagram

A B
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Subsets

Proper subsets

When we want to emphasize that A ⊆ B but B 6= A, we write
A ⊂ B and say that A is a proper subset of B. For A ⊂ B to be
true, it must be the case that A ⊆ B yet there is an element of B
which is not an element of A.

In symbols,

∀x(x ∈ A→ x ∈ B) ∧ ∃x(x ∈ B ∧ x 6∈ A).

Double containment

A useful way to show that two sets are equal is to show that each
is a subset of the other. In other words, if we can show A ⊆ B and
B ⊆ A, then A = B. In symbols,

(∀x(x ∈ A↔ x ∈ B))

↔ (∀x(x ∈ A→ x ∈ B) ∧ ∀x(x ∈ B → x ∈ A)) .
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Sets with other sets as members

Sets may have other sets as members. For instance, consider

A = {∅, {a}, {b}, {a, b}}, B ={x | x is a subset of {a, b}}.

Note that these sets are equal: A = B. Note also that {a} is a
member of A, but a is not.
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The size of a set

Definition

Let S be a set. If there are exactly n elements in S , where n is a
non-negative integer, then we say that S is a finite set and that n
is the cardinality of S , denoted by |S |.

Definition

If S is not a finite set, then it is said to be infinite.
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Power sets

Definition

Given a set S , the power set of S is the set of all the subsets of S .
It is denoted P(S).
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Cartesian products

Definition

The ordered n-tuple (a1, a2, . . . , an) is the ordered collection that
has a1 as its first element, a2 as its second element, . . . , and an as
its nth element. When n = 2, these are also called ordered pairs.

Equality

If (b1, . . . , bn) is another n-tuple, then these are said to be equal
when each of their terms is equal, i.e., when ai = bi for each choice
of i . Note that the pairs (x , y) and (y , x) are equal only if x = y .

Definition

Let A and B be sets. Their Cartesian product, written A× B, is
the set of all ordered pairs (a, b) with a ∈ A and b ∈ B.

A× B = {(a, b) | a ∈ A ∧ b ∈ B}.
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Cartesian products

Definition

More generally, given sets A1, A2, . . . , An, their Cartesian product
is the set of n-tuples (a1, a2, . . . , an) with ai ∈ Ai .

A1×A2×· · ·×An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}.

Definition

A subset of the Cartesian product A× B is called a relation from
the set A to the set B.
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Using set notation with quantifiers

Sometimes we restrict the domain of a quantified statement by
making use of set notation:

∀x ∈ S(P(x))

≡ ∀x(x ∈ S → P(x)),

∃x ∈ S(P(x))

≡ ∃x(x ∈ S ∧ P(x)).
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Truth sets and quantifiers

Definition

Given a predicate P and domain D, we define the truth set of P to
be the set of elements x in D for which P(x) is true. This truth
set is denoted

{x ∈ D | P(x)}.

Example

What are the truth sets of P(x), Q(x), and R(x), where the
domain is the set of integers and

P(x) ≡ (|x | = 1)?

Q(x) ≡ (x2 = 2)?

R(x) ≡ (|x | = x)?
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2.2: Set Operations
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Basic operations

Union

Let A and B be sets. Their union, written A ∪ B, is the set that
contains those elements which are in A, in B, or in both.

A ∪ B = {x | x ∈ A ∨ x ∈ B}.

Intersection

Let A and B be sets. Their intersection, written A ∩ B, is the set
that contains those elements which are in both A and B.

A ∩ B = {x | x ∈ A ∧ x ∈ B}.
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Basic operations

A: A B

B: A B

A ∪ B: A B

A ∩ B: A B

Prof. Steven Evans Discrete Mathematics



Sets
Set Operations

Basic operations

A: A B

B: A B

A ∪ B: A B

A ∩ B: A B

Prof. Steven Evans Discrete Mathematics



Sets
Set Operations

Basic operations

A: A B

B: A B

A ∪ B: A B

A ∩ B: A B

Prof. Steven Evans Discrete Mathematics



Sets
Set Operations

Basic operations

Definition

Two sets are called disjoint if their intersection is the empty set.

Cardinalities

We are often interested in finding the cardinality of the union of
two finite sets A and B. Note that |A|+ |B| counts once each
element which is in A or B but the the other, while it counts twice
each element that appears in both A and B. Hence:

|A ∪ B| = |A|+ |B| − |A ∩ B|.
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Basic operations

Difference

Let A and B be sets. The difference of A and B, denoted A \ B
(or sometimes A− B) is the set of elements of A which are not
elements of B.

A \ B = {x | x ∈ A ∧ x 6∈ B}.

Complement

Let U be the “universal set”. The complement of A, denoted Ā, is
the difference U \ A. An element x belongs to Ā if and only if
x 6∈ A, hence:

Ā = {x ∈ U | x 6∈ A}.
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the difference U \ A. An element x belongs to Ā if and only if
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Basic operations

A \ B: A B

Ā:

U

A
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Basic operations

A \ B: A B Ā:

U

A
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Set identities

Identity laws:

A ∩ U = A,

A ∪∅ = A.

Domination laws:

A ∪ U = U,

A ∩∅ = ∅.

Idempotent laws:

A ∪ A = A,

A ∩ A = A.

Complementation law:

(A) = A.

Commutative laws:

A ∪ B = B ∪ A,

A ∩ B = B ∩ A.

Associative laws:

A ∪ (B ∪ C ) = (A ∪ B) ∪ C ,

A ∩ (B ∩ B) = (A ∩ B) ∩ C .

Distributive laws:

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ),

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ B).
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Set identities

De Morgan’s laws:

A ∩ B = A ∪ B,

A ∪ B = A ∩ B.

Absorption laws:

A ∪ (A ∩ B) = A,

A ∩ (A ∪ B) = A.

Complement laws:

A ∪ A = U,

A ∩ A = ∅.
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Set identities

Example

Use set-builder notation and logical equivalences to establish the
first De Morgan law A ∩ B = A ∪ B.

A ∩ B = {x | x 6∈ A ∩ B}
= {x | ¬(x ∈ (A ∩ B))}
= {x | ¬(x ∈ A ∧ x ∈ B)}
= {x | ¬(x ∈ A) ∨ ¬(x ∈ B)}
= {x | x 6∈ A ∨ x 6∈ B}
= {x | x ∈ A ∨ x ∈ B}
= {x | x ∈ A ∪ B}
= A ∪ B.
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Set identities

Example

Use a membership table to show

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

A B C B ∪ C A ∩ (B ∪ C ) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C )

0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0

0 1 0 1

0 0 0 0

0 1 1 1

0 0 0 0

1 0 0 0

0 0 0 0

1 0 1 1

1 0 1 1

1 1 0 1

1 1 0 1

1 1 1 1

1 1 1 1
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0 0 0 0 0

0 0 0

0 0 1 1 0

0 0 0

0 1 0 1 0

0 0 0

0 1 1 1 0

0 0 0

1 0 0 0 0

0 0 0

1 0 1 1 1

0 1 1

1 1 0 1 1

1 0 1

1 1 1 1 1

1 1 1
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Example

Use a membership table to show
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A B C B ∪ C A ∩ (B ∪ C ) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C )

0 0 0 0 0 0 0

0

0 0 1 1 0 0 0

0

0 1 0 1 0 0 0

0

0 1 1 1 0 0 0

0

1 0 0 0 0 0 0

0

1 0 1 1 1 0 1

1

1 1 0 1 1 1 0

1

1 1 1 1 1 1 1

1
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Example

Use a membership table to show
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A B C B ∪ C A ∩ (B ∪ C ) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C )

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1
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Sets
Set Operations

Generalized unions and intersections

Because unions and intersections of sets satisfy associative laws,
the sets A ∪ B ∪ C and A ∩ B ∩ C are well defined; that is, the
meaning of this notation is unambiguous. Note that A ∪ B ∪ C
contains those elements that are in at least one of the sets A, B,
and C , and that A ∩ B ∩ C contains those elements that are in all
of A, B, and C .
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Set Operations

Generalized unions and intersections

Definition

The union of a collection of sets is the set that contains those
elements which are members of at least one set in the collection.

A1 ∪ · · · ∪ An =
n⋃

i=1

Ai = {x | ∃i ∈ {1, . . . , n}(x ∈ Ai )}.

Definition

The intersection of a collection of sets is the set that contains
those elements which are members of all the sets in the collection.

A1 ∩ · · · ∩ An =
n⋂

i=1

Ai = {x | ∀i ∈ {1, . . . , n}(x ∈ Ai )}.
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Generalized unions and intersections

A ∪ B ∪ C :
A B

C

A ∩ B ∩ C :
A B

C
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