

Discrete Mathematics

Basic Structures: Sets, Functions, Sequences, and Sums

Prof. Steven Evans

2.1: Sets

Sets

Definition

A *set* is an unordered collection of objects, called *elements* or *members* of the set. A set is said to *contain* its elements. We use " $a \in A$ " to denote that a is an element of the set A . Likewise, we use " $a \notin A$ " to denote that a is not an element of A .

Set-builder notation

Another way to describe a set is to use *set-builder notation*, which characterizes the elements of a set by the property they must have in order to be members.

Set-builder notation

Another way to describe a set is to use *set-builder notation*, which characterizes the elements of a set by the property they must have in order to be members.

Example

$$\mathbb{Q}^+ = \{x \in \mathbb{R} \mid x = \frac{p}{q} \text{ for positive integers } p \text{ and } q\}$$

Sets

More examples of sets

- $\mathbb{N} = \{0, 1, 2, 3, \dots\}$, the set of *natural numbers*.
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, the set of *integers*.
- $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$, the set of *positive integers*.
- $\mathbb{Q} = \{\frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \text{ nonzero}\}$, the set of *rational numbers*.
- \mathbb{R} , the set of *real numbers*.
- \mathbb{R}^+ , the set of *positive real numbers*.
- \mathbb{C} , the set of *complex numbers*.

Intervals

Definition

When a and b are real numbers with $a < b$, we write:

- $[a, b] = \{x \mid a \leq x \leq b\}$,
- $[a, b) = \{x \mid a \leq x < b\}$,
- $(a, b] = \{x \mid a < x \leq b\}$,
- $(a, b) = \{x \mid a < x < b\}$.

Sets

Definition

Two sets are said to be *equal* when they have the same elements, meaning that A and B are equal if and only if the sentence

$$\forall x(x \in A \leftrightarrow x \in B)$$

holds. We write $A = B$ for this sentence.

Sets

Definition

Two sets are said to be *equal* when they have the same elements, meaning that A and B are equal if and only if the sentence

$$\forall x(x \in A \leftrightarrow x \in B)$$

holds. We write $A = B$ for this sentence.

Definition

There is a special set that contains no elements. This set is called the *empty set* or the *null set* and is denoted by \emptyset or by $\{\}$.

Venn Diagrams

Example

A Venn diagram for the set of vowels:



Subsets

Definition

The set A is a *subset* of B if every element of A is also an element of B . This is written symbolically as

$$\forall x(x \in A \rightarrow x \in B).$$

We use the notation $A \subseteq B$ to indicate this relationship.

Subsets

Definition

The set A is a *subset* of B if every element of A is also an element of B . This is written symbolically as

$$\forall x(x \in A \rightarrow x \in B).$$

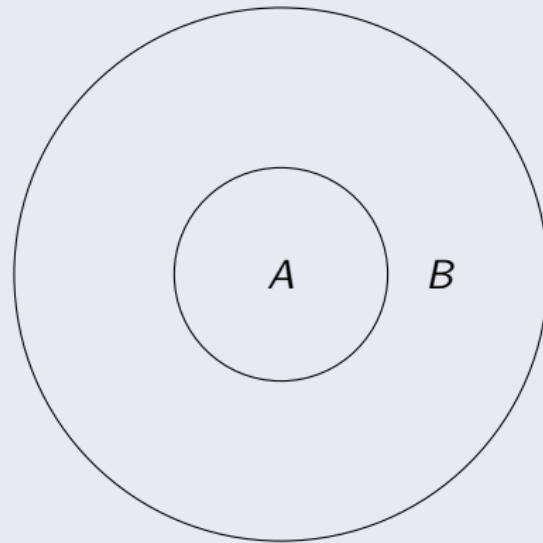
We use the notation $A \subseteq B$ to indicate this relationship.

Note

Note that to show that A is *not* a subset of B , we need only find one element $x \in A$ with $x \notin B$. This element is a counterexample to the claim that $x \in A$ implies $x \in B$.

Subsets

“Subset” as a Venn diagram



Subsets

Proper subsets

When we want to emphasize that $A \subseteq B$ but $B \neq A$, we write $A \subset B$ and say that A is a *proper subset* of B . For $A \subset B$ to be true, it must be the case that $A \subseteq B$ yet there is an element of B which is not an element of A .

Subsets

Proper subsets

When we want to emphasize that $A \subseteq B$ but $B \neq A$, we write $A \subset B$ and say that A is a *proper subset* of B . For $A \subset B$ to be true, it must be the case that $A \subseteq B$ yet there is an element of B which is not an element of A . In symbols,

$$\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A).$$

Subsets

Proper subsets

When we want to emphasize that $A \subseteq B$ but $B \neq A$, we write $A \subset B$ and say that A is a *proper subset* of B . For $A \subset B$ to be true, it must be the case that $A \subseteq B$ yet there is an element of B which is not an element of A . In symbols,

$$\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A).$$

Double containment

A useful way to show that two sets are equal is to show that each is a subset of the other. In other words, if we can show $A \subseteq B$ and $B \subseteq A$, then $A = B$.

Subsets

Proper subsets

When we want to emphasize that $A \subseteq B$ but $B \neq A$, we write $A \subset B$ and say that A is a *proper subset* of B . For $A \subset B$ to be true, it must be the case that $A \subseteq B$ yet there is an element of B which is not an element of A . In symbols,

$$\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A).$$

Double containment

A useful way to show that two sets are equal is to show that each is a subset of the other. In other words, if we can show $A \subseteq B$ and $B \subseteq A$, then $A = B$. In symbols,

$$\begin{aligned} & (\forall x(x \in A \leftrightarrow x \in B)) \\ & \leftrightarrow (\forall x(x \in A \rightarrow x \in B) \wedge \forall x(x \in B \rightarrow x \in A)). \end{aligned}$$

Sets with other sets as members

Sets may have other sets as members. For instance, consider

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \quad B = \{x \mid x \text{ is a subset of } \{a, b\}\}.$$

Sets with other sets as members

Sets may have other sets as members. For instance, consider

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \quad B = \{x \mid x \text{ is a subset of } \{a, b\}\}.$$

Note that these sets are equal: $A = B$.

Sets with other sets as members

Sets may have other sets as members. For instance, consider

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}, \quad B = \{x \mid x \text{ is a subset of } \{a, b\}\}.$$

Note that these sets are equal: $A = B$. Note also that $\{a\}$ is a member of A , but a is not.

The size of a set

Definition

Let S be a set. If there are exactly n elements in S , where n is a non-negative integer, then we say that S is a *finite set* and that n is the *cardinality* of S , denoted by $|S|$.

The size of a set

Definition

Let S be a set. If there are exactly n elements in S , where n is a non-negative integer, then we say that S is a *finite set* and that n is the *cardinality* of S , denoted by $|S|$.

Definition

If S is not a finite set, then it is said to be *infinite*.

Power sets

Definition

Given a set S , the *power set* of S is the set of all the subsets of S . It is denoted $\mathcal{P}(S)$.

Cartesian products

Definition

The *ordered n -tuple* (a_1, a_2, \dots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, \dots , and a_n as its n th element. When $n = 2$, these are also called *ordered pairs*.

Cartesian products

Definition

The *ordered n -tuple* (a_1, a_2, \dots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, \dots , and a_n as its n th element. When $n = 2$, these are also called *ordered pairs*.

Equality

If (b_1, \dots, b_n) is another n -tuple, then these are said to be equal when each of their terms is equal, i.e., when $a_i = b_i$ for each choice of i . Note that the pairs (x, y) and (y, x) are equal only if $x = y$.

Cartesian products

Definition

The *ordered n -tuple* (a_1, a_2, \dots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, \dots , and a_n as its n th element. When $n = 2$, these are also called *ordered pairs*.

Equality

If (b_1, \dots, b_n) is another n -tuple, then these are said to be equal when each of their terms is equal, i.e., when $a_i = b_i$ for each choice of i . Note that the pairs (x, y) and (y, x) are equal only if $x = y$.

Definition

Let A and B be sets. Their *Cartesian product*, written $A \times B$, is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

Cartesian products

Definition

The *ordered n -tuple* (a_1, a_2, \dots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, \dots , and a_n as its n th element. When $n = 2$, these are also called *ordered pairs*.

Equality

If (b_1, \dots, b_n) is another n -tuple, then these are said to be equal when each of their terms is equal, i.e., when $a_i = b_i$ for each choice of i . Note that the pairs (x, y) and (y, x) are equal only if $x = y$.

Definition

Let A and B be sets. Their *Cartesian product*, written $A \times B$, is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) \mid a \in A \wedge b \in B\}.$$

Cartesian products

Definition

More generally, given sets A_1, A_2, \dots, A_n , their Cartesian product is the set of n -tuples (a_1, a_2, \dots, a_n) with $a_i \in A_i$.

Cartesian products

Definition

More generally, given sets A_1, A_2, \dots, A_n , their Cartesian product is the set of n -tuples (a_1, a_2, \dots, a_n) with $a_i \in A_i$.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}.$$

Cartesian products

Definition

More generally, given sets A_1, A_2, \dots, A_n , their Cartesian product is the set of n -tuples (a_1, a_2, \dots, a_n) with $a_i \in A_i$.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n\}.$$

Definition

A subset of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B .

Using set notation with quantifiers

Sometimes we restrict the domain of a quantified statement by making use of set notation:

$$\forall x \in S(P(x))$$

$$\exists x \in S(P(x))$$

Using set notation with quantifiers

Sometimes we restrict the domain of a quantified statement by making use of set notation:

$$\begin{aligned}\forall x \in S(P(x)) &\equiv \forall x(x \in S \rightarrow P(x)), \\ \exists x \in S(P(x)) &\equiv \exists x(x \in S \wedge P(x)).\end{aligned}$$

Truth sets and quantifiers

Definition

Given a predicate P and domain D , we define the *truth set* of P to be the set of elements x in D for which $P(x)$ is true. This truth set is denoted

$$\{x \in D \mid P(x)\}.$$

Truth sets and quantifiers

Definition

Given a predicate P and domain D , we define the *truth set* of P to be the set of elements x in D for which $P(x)$ is true. This truth set is denoted

$$\{x \in D \mid P(x)\}.$$

Example

What are the truth sets of $P(x)$, $Q(x)$, and $R(x)$, where the domain is the set of integers and

$$P(x) \equiv (|x| = 1)?$$

Truth sets and quantifiers

Definition

Given a predicate P and domain D , we define the *truth set* of P to be the set of elements x in D for which $P(x)$ is true. This truth set is denoted

$$\{x \in D \mid P(x)\}.$$

Example

What are the truth sets of $P(x)$, $Q(x)$, and $R(x)$, where the domain is the set of integers and

$$P(x) \equiv (|x| = 1)?$$

$$Q(x) \equiv (x^2 = 2)?$$

Truth sets and quantifiers

Definition

Given a predicate P and domain D , we define the *truth set* of P to be the set of elements x in D for which $P(x)$ is true. This truth set is denoted

$$\{x \in D \mid P(x)\}.$$

Example

What are the truth sets of $P(x)$, $Q(x)$, and $R(x)$, where the domain is the set of integers and

$$P(x) \equiv (|x| = 1)?$$

$$Q(x) \equiv (x^2 = 2)?$$

$$R(x) \equiv (|x| = x)?$$

2.2: Set Operations

Basic operations

Union

Let A and B be sets. Their union, written $A \cup B$, is the set that contains those elements which are in A , in B , or in both.

$$A \cup B = \{x \mid x \in A \vee x \in B\}.$$

Basic operations

Union

Let A and B be sets. Their union, written $A \cup B$, is the set that contains those elements which are in A , in B , or in both.

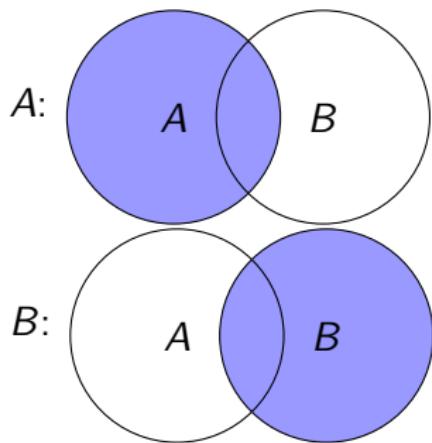
$$A \cup B = \{x \mid x \in A \vee x \in B\}.$$

Intersection

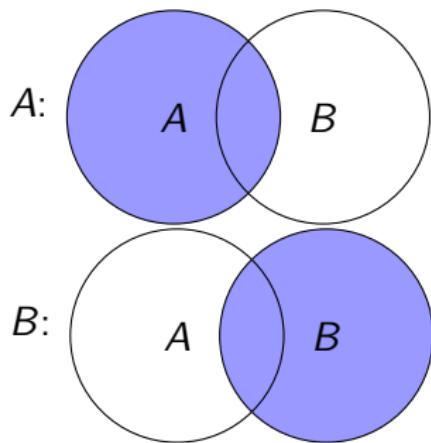
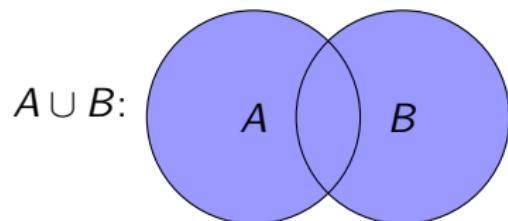
Let A and B be sets. Their intersection, written $A \cap B$, is the set that contains those elements which are in both A and B .

$$A \cap B = \{x \mid x \in A \wedge x \in B\}.$$

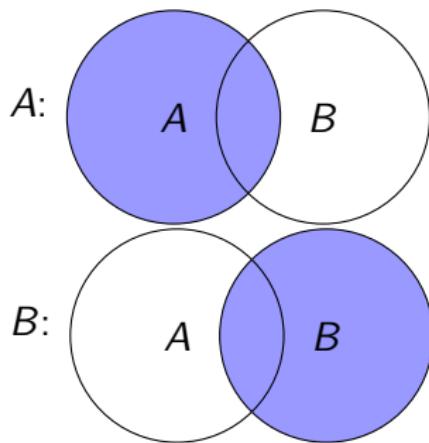
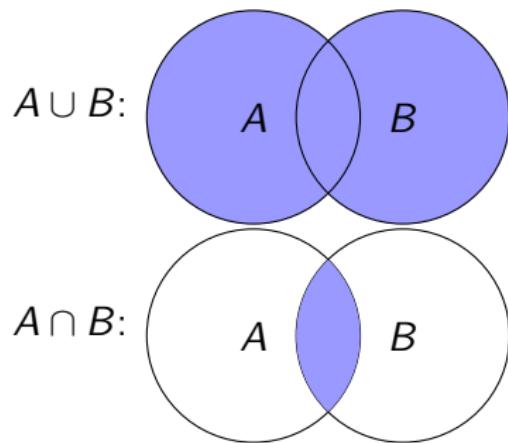
Basic operations



Basic operations



Basic operations



Basic operations

Definition

Two sets are called *disjoint* if their intersection is the empty set.

Basic operations

Definition

Two sets are called *disjoint* if their intersection is the empty set.

Cardinalities

We are often interested in finding the cardinality of the union of two finite sets A and B . Note that $|A| + |B|$ counts once each element which is in A or B but the the other, while it counts twice each element that appears in both A and B .

Basic operations

Definition

Two sets are called *disjoint* if their intersection is the empty set.

Cardinalities

We are often interested in finding the cardinality of the union of two finite sets A and B . Note that $|A| + |B|$ counts once each element which is in A or B but the the other, while it counts twice each element that appears in both A and B . Hence:

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Basic operations

Difference

Let A and B be sets. The *difference* of A and B , denoted $A \setminus B$ (or sometimes $A - B$) is the set of elements of A which are not elements of B .

Basic operations

Difference

Let A and B be sets. The *difference* of A and B , denoted $A \setminus B$ (or sometimes $A - B$) is the set of elements of A which are not elements of B .

$$A \setminus B = \{x \mid x \in A \wedge x \notin B\}.$$

Basic operations

Difference

Let A and B be sets. The *difference* of A and B , denoted $A \setminus B$ (or sometimes $A - B$) is the set of elements of A which are not elements of B .

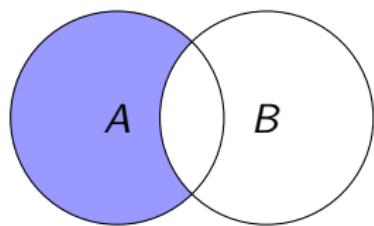
$$A \setminus B = \{x \mid x \in A \wedge x \notin B\}.$$

Complement

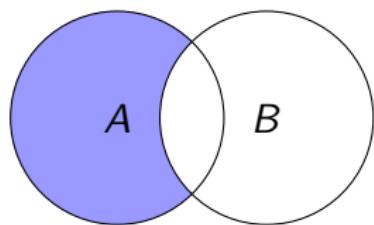
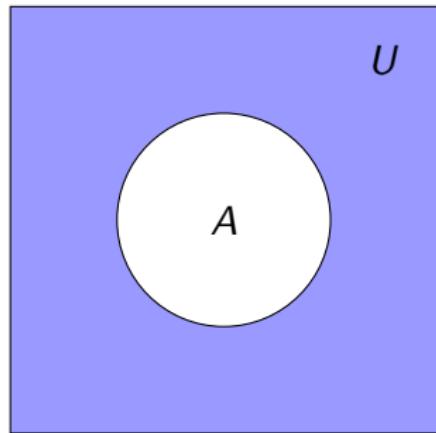
Let U be the “universal set”. The complement of A , denoted \bar{A} , is the difference $U \setminus A$. An element x belongs to \bar{A} if and only if $x \notin A$, hence:

$$\bar{A} = \{x \in U \mid x \notin A\}.$$

Basic operations

 $A \setminus B:$ 

Basic operations

 $A \setminus B:$  $\bar{A}:$ 

Set identities

Identity laws:

- $A \cap U = A$,
- $A \cup \emptyset = A$.

Set identities

Identity laws:

- $A \cap U = A$,
- $A \cup \emptyset = A$.

Domination laws:

- $A \cup U = U$,
- $A \cap \emptyset = \emptyset$.

Set identities

Identity laws:

- $A \cap U = A$,
- $A \cup \emptyset = A$.

Domination laws:

- $A \cup U = U$,
- $A \cap \emptyset = \emptyset$.

Idempotent laws:

- $A \cup A = A$,
- $A \cap A = A$.

Set identities

Identity laws:

- $A \cap U = A$,
- $A \cup \emptyset = A$.

Domination laws:

- $A \cup U = U$,
- $A \cap \emptyset = \emptyset$.

Idempotent laws:

- $A \cup A = A$,
- $A \cap A = A$.

Complementation law:

- $\overline{\overline{A}} = A$.

Commutative laws:

- $A \cup B = B \cup A$,
- $A \cap B = B \cap A$.

Set identities

Identity laws:

- $A \cap U = A$,
- $A \cup \emptyset = A$.

Domination laws:

- $A \cup U = U$,
- $A \cap \emptyset = \emptyset$.

Idempotent laws:

- $A \cup A = A$,
- $A \cap A = A$.

Complementation law:

- $\overline{\overline{A}} = A$.

Commutative laws:

- $A \cup B = B \cup A$,
- $A \cap B = B \cap A$.

Associative laws:

- $A \cup (B \cup C) = (A \cup B) \cup C$,
- $A \cap (B \cap C) = (A \cap B) \cap C$.

Set identities

Identity laws:

- $A \cap U = A$,
- $A \cup \emptyset = A$.

Domination laws:

- $A \cup U = U$,
- $A \cap \emptyset = \emptyset$.

Idempotent laws:

- $A \cup A = A$,
- $A \cap A = A$.

Complementation law:

- $\overline{(\overline{A})} = A$.

Commutative laws:

- $A \cup B = B \cup A$,
- $A \cap B = B \cap A$.

Associative laws:

- $A \cup (B \cup C) = (A \cup B) \cup C$,
- $A \cap (B \cap C) = (A \cap B) \cap C$.

Distributive laws:

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Set identities

De Morgan's laws:

- $\overline{A \cap B} = \overline{A} \cup \overline{B}$,
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Set identities

De Morgan's laws:

- $\overline{A \cap B} = \overline{A} \cup \overline{B}$,
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Absorption laws:

- $A \cup (A \cap B) = A$,
- $A \cap (A \cup B) = A$.

Set identities

De Morgan's laws:

- $\overline{A \cap B} = \overline{A} \cup \overline{B}$,
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Absorption laws:

- $A \cup (A \cap B) = A$,
- $A \cap (A \cup B) = A$.

Complement laws:

- $A \cup \overline{A} = U$,
- $A \cap \overline{A} = \emptyset$.

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\ &= \{x \mid \neg(x \in (A \cap B))\}\end{aligned}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\ &= \{x \mid \neg(x \in (A \cap B))\} \\ &= \{x \mid \neg(x \in A \wedge x \in B)\}\end{aligned}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\ &= \{x \mid \neg(x \in (A \cap B))\} \\ &= \{x \mid \neg(x \in A \wedge x \in B)\} \\ &= \{x \mid \neg(x \in A) \vee \neg(x \in B)\}\end{aligned}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\&= \{x \mid \neg(x \in (A \cap B))\} \\&= \{x \mid \neg(x \in A \wedge x \in B)\} \\&= \{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\&= \{x \mid x \notin A \vee x \notin B\}\end{aligned}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\&= \{x \mid \neg(x \in (A \cap B))\} \\&= \{x \mid \neg(x \in A \wedge x \in B)\} \\&= \{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\&= \{x \mid x \notin A \vee x \notin B\} \\&= \{x \mid x \in \overline{A} \vee x \in \overline{B}\}\end{aligned}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\&= \{x \mid \neg(x \in (A \cap B))\} \\&= \{x \mid \neg(x \in A \wedge x \in B)\} \\&= \{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\&= \{x \mid x \notin A \vee x \notin B\} \\&= \{x \mid x \in \overline{A} \vee x \in \overline{B}\} \\&= \{x \mid x \in \overline{A} \cup \overline{B}\}\end{aligned}$$

Set identities

Example

Use set-builder notation and logical equivalences to establish the first De Morgan law $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$\begin{aligned}\overline{A \cap B} &= \{x \mid x \notin A \cap B\} \\&= \{x \mid \neg(x \in (A \cap B))\} \\&= \{x \mid \neg(x \in A \wedge x \in B)\} \\&= \{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\&= \{x \mid x \notin A \vee x \notin B\} \\&= \{x \mid x \in \overline{A} \vee x \in \overline{B}\} \\&= \{x \mid x \in \overline{A} \cup \overline{B}\} \\&= \overline{A} \cup \overline{B}.\end{aligned}$$

Set identities

Example

Use a membership table to show

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

A	B	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0				
0	0	1	1				
0	1	0	1				
0	1	1	1				
1	0	0	0				
1	0	1	1				
1	1	0	1				
1	1	1	1				

Set identities

Example

Use a membership table to show

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

A	B	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	1	1	1			
1	1	0	1	1			
1	1	1	1	1			

Set identities

Example

Use a membership table to show

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

A	B	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Set identities

Example

Use a membership table to show

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

A	B	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Generalized unions and intersections

Because unions and intersections of sets satisfy associative laws, the sets $A \cup B \cup C$ and $A \cap B \cap C$ are well defined; that is, the meaning of this notation is unambiguous. Note that $A \cup B \cup C$ contains those elements that are in at least one of the sets A , B , and C , and that $A \cap B \cap C$ contains those elements that are in all of A , B , and C .

Generalized unions and intersections

Definition

The *union of a collection of sets* is the set that contains those elements which are members of at least one set in the collection.

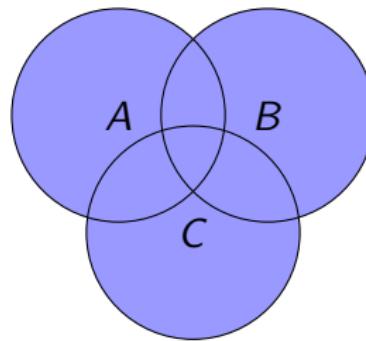
$$A_1 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i = \{x \mid \exists i \in \{1, \dots, n\} (x \in A_i)\}.$$

Definition

The *intersection of a collection of sets* is the set that contains those elements which are members of all the sets in the collection.

$$A_1 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i = \{x \mid \forall i \in \{1, \dots, n\} (x \in A_i)\}.$$

Generalized unions and intersections

 $A \cup B \cup C:$ 

Generalized unions and intersections

