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Functions

Definition

Let A and B be nonempty sets. A function f from A to B is an
assignment of exactly one element of B to each element of A. We
write f (a) = b to denote that b is the element assigned to a, and
we write f : A→ B to signify that f is a function from A to B.
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Remark

A function can be defined in terms of relations. Recall that a
relation from A to B is a subset of A× B. A relation that contains
exactly one ordered pair (a, b) for every element a ∈ A defines a
function f : A→ B. The function is given by f (a) = b, where
(a, b) is the unique pair in the relation with a as its first
component.
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Functions

Definition

If f is a function from A to B, we say that A is its domain and B
its codomain. If f (a) = b, we say that b is the image of a and a is
the preimage of b. The range or image of f is the set of all the
images of all the elements of A. Also, we sometimes say f maps A
to B.

a b
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Equality

When specifying a function, we specify its domain, its codomain,
and how it maps elements of the domain to the codomain. Two
functions are equal when

1 their domains are equal,

2 their codomains are equal,

3 and they map each element in their common domain to the
same element in their common codomain.
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Functions

Definition

Let f and g be functions from a set A to R, the set of real
numbers. Then there are functions f + g and f · g defined by the
formulas

(f + g)(a) = f (a) + g(a)

(f · g)(a) = f (a) · g(a).
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Definition

Let f be a function from A to B and let S be a subset of A. The
image of S under f is the subset of B of images of elements of S .
We write

f (S) = {t ∈ B | ∃s ∈ S(t = f (s))}.

We also use the shorthand {f (s) | s ∈ S} to refer to this set.
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One-to-one and onto functions

Definition

A function f is said to be one-to-one, injective, or an injection
when f (a) = f (b) implies a = b for all a and b in the domain of f .
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Remark

Note that a function is one-to-one if and only if f (a) 6= f (b)
whenever a 6= b. This is the contrapositive of the definition given
previously.

Remark

We can also express this property using quantifiers as:

∀a∀b(f (a) = f (b)→ a = b),

where the universe of discourse is the domain of the function.
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Definition

Suppose that f is a function whose domain and codomain are
subsets of the real numbers. Then f is called

increasing if f (x) ≤ f (y)

strictly increasing if f (x) < f (y)

decreasing if f (x) ≥ f (y)

strictly decreasing if f (x) > f (y)

whenever x and y are in the domain of f and x < y .

Remark

Note that if f is strictly increasing or strictly decreasing, then it is
one-to-one.
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Definition
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One-to-one and onto functions

Definition

A function f : A→ B is called onto, surjective, or a surjection
when for every element b ∈ B there is an element a ∈ A with
f (a) = b.
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One-to-one and onto functions

Definition

We say that a function is a one-to-one correspondence, bijective,
or a bijection if it is both one-to-one and onto.
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One-to-one and onto functions
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Inverse functions and function composition

Definition

Let f be a one-to-one correspondence from A to B. The inverse
function of f is the function f −1 that assigns to b ∈ B the unique
element a ∈ A with f (a) = b. Hence, when f (a) = b, then
f −1(b) = a.

a = f −1(b) b = f (a)

A Bf

f −1
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Inverse functions and function composition

Definition

Let g : A→ B and f : B → C be two functions. Then their
composition is a function f ◦ g : A→ C , pronounced “f after g”,
is defined by the formula (f ◦ g)(a) = f (g(a)).

a g(a) f (g(a))

A B C

g(a) f (g(a))

(f ◦ g)(a)

g f

f ◦ g
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Graphs of functions

Definition

Let f be a function f : A→ B; then the graph of f is the subset of
A× B of ordered pairs

{(a, b) | a ∈ A, b = f (a)}.
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Definition

The floor function assigns to a real number x the largest integer
which is less than or equal to it, denoted bxc. The ceiling function
assigns to a real number x the smallest integer which is greater
than or equal to it, denoted dxe.
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Useful properties of the floor and ceiling functions

Let x be a real number and n an integer.
Value inequalities:

bxc = n if and only if
n ≤ x < n + 1.

dxe = n if and only if
n − 1 < x ≤ n.

bxc = n if and only if
x − 1 < n ≤ x .

dxe = n if and only if
x ≤ n < x + 1.

x − 1 < bxc ≤ x ≤ dxe < x + 1.

Negative identities:

b−xc = −dxe.
d−xe = −bxc.

Translation identities:

bx + nc = bxc+ n.

dx + ne = dxe+ n.
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Some important functions

Definition

We’ll use the notation log x to denote the base 2 logarithm of x .
Generally, for b > 1 we write logb x to denote the base b logarithm
of x , and we reserve ln x for the natural logarithm of x .

Definition

The factorial function f : N→ Z+ is denoted by f (n) = n! and
defined by the pair of formulas

0! = 1, n! = n · (n − 1)!.
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Some important functions

Remark

Stirling’s formula tells us

n! ∼
√

2πn ·
(n
e

)n
,

where f ∼ g denotes the sentence

lim
n→∞

f (n)

g(n)
= 1.

The symbol ∼ is read “is asymptotic to”.
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2.4: Sequences and Summations
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Sequences

Definition

A sequence is a function from a subset of the set of integers
(usually either {0, 1, 2, . . .} or {1, 2, 3, . . .}) to a set S . We often
write an, called a term, to denote the image of n. To denote the
sequence as a whole, we often write {an} or (an). (Note that {an}
unfortunately conflicts with the notation for sets introduced
earlier.)
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Sequences

Definition

A geometric progression is a sequence

a, ar , ar2, ar3, . . . ,

where a is the initial term and r is the common ratio.

Definition

A arithmetic progression is a sequence

a, a + d , a + 2d , a + 3d , . . . ,

where a is the initial term and d is the common difference.
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Sequences

Definition

A geometric progression is a sequence

a, ar , ar2, ar3, . . . ,

where a is the initial term and r is the common ratio.

Definition

A arithmetic progression is a sequence

a, a + d , a + 2d , a + 3d , . . . ,

where a is the initial term and d is the common difference.
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Recurrence relations

Definition

A recurrence relation for a sequence {an} is an equation which
expression an in terms of the previous terms a0, . . . , an−1, for
n ≥ n0 for some fixed index n0. A solution of the recurrence
relation is a sequence satisfying the given equations.

Example

The Fibonacci sequence f0, f1, f2, . . . is determined by the equations

f0 = 0,

f1 = 1,

fn = fn−1 + fn−2

for n = 2, 3, 4, . . ..
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Definition
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Recurrence relations: an example

Consider the recurrence relation an = 2an−1 − an−2 for n ≥ 2.

Does an = 3n satisfy this relation?

an = 2an−1 − an−2

= 2(3(n − 1))− 3(n − 2)

= 6n − 6− 3n + 6

= 3n. OK!
Does an = 2n satisfy this relation?

a0 = 1,

a1 = 2,

a2 = 4,

a2 = 2a1 − a0

= 4− 1 = 3. (Not OK.)
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Recurrence relations: an example

Consider the recurrence relation an = 2an−1 − an−2 for n ≥ 2.

Does an = 5 satisfy this relation?

an = 2an−1 − an−2

= 2 · 5− 5

= 5. OK!
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Recurrence relations: an example

Consider the recurrence relation an = 2an−1 − an−2 for n ≥ 2.

Does an = 5 satisfy this relation?
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= 2 · 5− 5
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Summations

Definition

Pick a sequence {an}. We use the notations

n∑
j=m

aj ,
∑n

j=m aj , or
∑

m≤j≤n aj

(read as “the sum of aj with j ranging from m to n”) to denote

am + am+1 + · · ·+ an−1 + an.

The variable j is called the index of summation.
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Summations

Remark

The choice of the letter j is entirely arbitrary — we can replace it
with any unbound symbol we please. For instance:

n∑
j=m

aj =
n∑

i=m

ai =
n∑

k=m

ak .
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Theorem: Geometric summation

If a and r are real numbers with r 6= 0,

n∑
j=0

ar j =

{
arn+1−a
r−1 if r 6= 1,

(n + 1)a if r = 1.
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Summations

Here are some other summation formulas:∑n
k=0 ar

k = arn+1−a

r−1 for r 6= 1.

∑n
k=0 k = n(n+1)

2 .∑n
k=0 k

2 = n(n+1)(2n+1)
6 .∑n

k=0 k
3 = n2(n+1)2

4 .∑∞
k=0 x

k = 1
1−x for |x | < 1.∑∞

k=1 kx
k−1 = 1

(1−x)2 for |x | < 1.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

Summations

Here are some other summation formulas:∑n
k=0 ar

k = arn+1−a

r−1 for r 6= 1.∑n
k=0 k = n(n+1)

2 .

∑n
k=0 k

2 = n(n+1)(2n+1)
6 .∑n

k=0 k
3 = n2(n+1)2

4 .∑∞
k=0 x

k = 1
1−x for |x | < 1.∑∞

k=1 kx
k−1 = 1

(1−x)2 for |x | < 1.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

Summations

Here are some other summation formulas:∑n
k=0 ar

k = arn+1−a

r−1 for r 6= 1.∑n
k=0 k = n(n+1)

2 .∑n
k=0 k

2 = n(n+1)(2n+1)
6 .

∑n
k=0 k

3 = n2(n+1)2

4 .∑∞
k=0 x

k = 1
1−x for |x | < 1.∑∞

k=1 kx
k−1 = 1

(1−x)2 for |x | < 1.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

Summations

Here are some other summation formulas:∑n
k=0 ar

k = arn+1−a

r−1 for r 6= 1.∑n
k=0 k = n(n+1)

2 .∑n
k=0 k

2 = n(n+1)(2n+1)
6 .∑n

k=0 k
3 = n2(n+1)2

4 .

∑∞
k=0 x

k = 1
1−x for |x | < 1.∑∞

k=1 kx
k−1 = 1

(1−x)2 for |x | < 1.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

Summations

Here are some other summation formulas:∑n
k=0 ar

k = arn+1−a

r−1 for r 6= 1.∑n
k=0 k = n(n+1)

2 .∑n
k=0 k

2 = n(n+1)(2n+1)
6 .∑n

k=0 k
3 = n2(n+1)2

4 .∑∞
k=0 x

k = 1
1−x for |x | < 1.

∑∞
k=1 kx

k−1 = 1
(1−x)2 for |x | < 1.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

Summations

Here are some other summation formulas:∑n
k=0 ar

k = arn+1−a

r−1 for r 6= 1.∑n
k=0 k = n(n+1)

2 .∑n
k=0 k

2 = n(n+1)(2n+1)
6 .∑n

k=0 k
3 = n2(n+1)2

4 .∑∞
k=0 x

k = 1
1−x for |x | < 1.∑∞

k=1 kx
k−1 = 1

(1−x)2 for |x | < 1.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

2.5: Cardinality of Sets
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Cardinalities

Definition

The sets A and B have the same cardinality if there is a one-to-one
correspondence A→ B. In this case, we write |A| = |B|.

Definition

When there is an injection A→ B, we write |A| ≤ |B|, so that the
cardinality of B is at least that of A. If A and B also have distinct
cardinalities, we write |A| < |B|.
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Cardinalities

Definition

The sets A and B have the same cardinality if there is a one-to-one
correspondence A→ B. In this case, we write |A| = |B|.

Definition
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Cardinalities

Definition

A set which is either finite or the same cardinality as the integers is
called countable, and uncountable otherwise. When an infinite set
is countable, we write its cardinality as ℵ0.

Example

Show that the set of odd integers is countable.

{1, 3, 5, 7, 9, 11, 13, 15, 17, · · · }

{1, 2, 3, 4, 5, 6, 7, 8, 9, · · · }.
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An uncountable set

We will show that the reals are an uncountable set.

Suppose that
they were countable. In particular, the set of real numbers in the
interval [0, 1) would also be countable. Suppose we have such an
enumeration:

r1 = 0.d1,1d1,2d1,3d1,4 · · · ,
r2 = 0.d2,1d2,2d2,3d2,4 · · · ,
r3 = 0.d3,1d3,2d3,3d3,4 · · · ,
r4 = 0.d4,1d4,2d4,3d4,4 · · · ,

...

We will produce a number in [0, 1) not in this list. Define a
number x = 0.x1x2x3x4 · · · whose digits xi are given by the rule

xi =

{
4 if di ,i = 5,

5 otherwise.
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An uncountable set
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r3 = 0.d3,1d3,2d3,3d3,4 · · · ,

...

xi =

{
4 if di ,i = 5,

5 otherwise.

The number x does not appear in the enumeration.

If it did, it
would be equal to ri for some i . But the ith digit xi is designed
not to match the ith digit di ,i of ri . Hence, it cannot be equal to ri
for any i . So, [0, 1) cannot be enumerated. So, R cannot be
enumerated.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

An uncountable set

r1 = 0.d1,1d1,2d1,3d1,4 · · · ,
r2 = 0.d2,1d2,2d2,3d2,4 · · · ,
r3 = 0.d3,1d3,2d3,3d3,4 · · · ,

...

xi =

{
4 if di ,i = 5,

5 otherwise.

The number x does not appear in the enumeration. If it did, it
would be equal to ri for some i . But the ith digit xi is designed
not to match the ith digit di ,i of ri . Hence, it cannot be equal to ri
for any i .

So, [0, 1) cannot be enumerated. So, R cannot be
enumerated.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

An uncountable set

r1 = 0.d1,1d1,2d1,3d1,4 · · · ,
r2 = 0.d2,1d2,2d2,3d2,4 · · · ,
r3 = 0.d3,1d3,2d3,3d3,4 · · · ,

...

xi =

{
4 if di ,i = 5,

5 otherwise.

The number x does not appear in the enumeration. If it did, it
would be equal to ri for some i . But the ith digit xi is designed
not to match the ith digit di ,i of ri . Hence, it cannot be equal to ri
for any i . So, [0, 1) cannot be enumerated.

So, R cannot be
enumerated.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

An uncountable set

r1 = 0.d1,1d1,2d1,3d1,4 · · · ,
r2 = 0.d2,1d2,2d2,3d2,4 · · · ,
r3 = 0.d3,1d3,2d3,3d3,4 · · · ,

...

xi =

{
4 if di ,i = 5,

5 otherwise.

The number x does not appear in the enumeration. If it did, it
would be equal to ri for some i . But the ith digit xi is designed
not to match the ith digit di ,i of ri . Hence, it cannot be equal to ri
for any i . So, [0, 1) cannot be enumerated. So, R cannot be
enumerated.

Prof. Steven Evans Discrete Mathematics



Functions
Sequences and Summations

Cardinality of Sets

The union of a pair of countable sets is countable

Now, we’ll show that when A and B are countable sets, A ∪ B is
also countable.

We can make two assumptions:

1 We may assume A and B are disjoint. If they weren’t, then
we can replace B by B ′ = B \ A. This new B ′ is also
countable, and it satisfies A ∪ B = A ∪ B ′, so we will still
learn about the cardinality of A ∪ B.

2 We will proceed by cases. We need not consider both the case
where A is infinite and B is finite as well as the case where A
is finite and B is infinite. In the latter case, set A′ = B and
B ′ = A; then A′ ∪ B ′ = B ∪ A = A ∪ B.
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Cardinality of Sets

The union of a pair of countable sets is countable

Case 1: A finite, B finite

If A and B are both finite, then |A ∪ B| = |A|+ |B| is also finite.
Every finite set is automatically countable.
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Cardinality of Sets

The union of a pair of countable sets is countable

Case 2: A infinite, B finite

We can list the elements of B as b1, b2, . . . , bn. We can also list
the elements of A as a1, a2, . . .. The elements of A ∪ B can be
listed by concatenating the two lists:

b1, b2, . . . , bn, a1, a2, . . . .

Since the elements of A ∪ B can be listed, it is countable.
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Cardinalities

Theorem: (Cantor–)Schröder–Bernstein

If A and B are two sets with |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|. (That is, if there are injections f : A→ B and
g : B → A, then there is guaranteed to be a bijection h : A→ B.)

Example

Show that |(0, 1)| and |(0, 1]| are equal.
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