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Divisibility

Definition

If a and b are integers with a 6= 0, we say that a divides b if there
is an integer c such that b = ac (equivalently: if b

a is an integer),
and we write a | b. In this case, we say that a is a factor or divisor
of b and that b is a multiple of a.
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Divisibility

Theorem

Let a, b, and c be integers with a 6= 0.

1 If a | b and a | c , then a | (b + c).

2 If a | b, then a | bc for all integers c .

3 If a | b and b | c , then a | c .

Corollary

If a, b, and c are integers with a 6= 0 such that a | b and a | c ,
then a | (mb + nc) whenever m and n are integers.
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The division algorithm

Theorem: The division algorithm

Let a be an integer and d a positive integer. Then there are unique
integers q and r , with 0 ≤ r < d , such that a = dq + r .

Notation

d is called the divisor.

a is called the dividend.

q is called the quotient.

r is called the remainder.

Sometimes q = a div d and r = amod d are used to denote these
relationships.
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Modular arithmetic

Definition

If a and b are integers and m is a positive integer, then a is
congruent to b modulo m if m | a− b. We denote this by

a ≡ b (mod m).

This sentence is called a congruence and that m is its modulus
(pl.: moduli).

Theorem

Let a and b be integers, and let m be a positive integer. Then
a ≡ b (mod m) if and only if amodm = bmodm.
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Modular arithmetic

Theorem

Let m be a positive integer. The integers a and b are congruent
modulo m if and only if there is an integer k such that a = b + km.

Proof:

If a ≡ b (mod m), by the definition of congruence we know
that m | (a− b). This means there’s an integer k with
a− b = km, or equivalently that a = b + km.

Conversely, if there is an integer k with a = b + km, then
km = a− b. Hence, m divides a− b, so that a ≡ b (mod m).
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Modular arithmetic

Definition

The set of all integers congruent to an integer a modulo m is
called the congruence class of a modulo m. There are m pairwise
disjoint equivalence classes modulo m, and the union of these
equivalence classes is the entire set of integers.

Theorem

Let m be a positive integer. If a ≡ b (mod m) and c ≡ d
(mod m), then

a + c ≡ b + d (mod m)

and
ac ≡ bd (mod m).
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Modular arithmetic

Corollary

Let m be a positive integer and let a and b be integers. Then:

(a + b)modm = ((amodm) + (bmodm))modm,

and
abmodm = ((amodm)(bmodm))modm.
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Arithmetic modulo m

We can define modular arithmetic operations on Zm, the set of
nonnegative integers less than m (i.e., the set {0, 1, . . . ,m − 1}).
The operation of addition modulo m is given by

a +m b = (a + b)modm,

where the addition on the right-hand side of this equation is the
ordinary addition of integers. The operation of multiplication
modulo m is given by

a ·m b = (a · b)modm,

where again the multiplication on the right-hand side is ordinary
multiplication of integers. The operations +m and ·m are called
addition and multiplication modulo m, respectively.
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Arithmetic modulo m

Closure: Let a, b ∈ Zm, then a +m b and a ·m b are also in Zm.

Associativity: If a, b, and c belong to Zm, then
(a +m b) +m c = a +m (b +m c).

Commutativity: If a and b belong to Zm, then
a +m b = b +m a and a ·m b = b ·m a.

Identity elements: For a ∈ Zm, we have a +m 0 = a and
a ·m 1 = a.

Additive inverses: If a 6= 0 belongs to Zm, then m − a is an
additive inverse of a modulo m and 0 is its own additive
inverse. That is: a +m (m − a) = 0 and 0 +m 0 = 0.

Distributivity: If a, b, and c belong to Zm, then

a ·m (b +m c) = (a ·m b) +m (a ·m c).
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Arithmetic modulo m

Remark

Because Zm with the operations of addition and multiplication
modulo m satisfies the properties listed, Zm with modular addition
is said to be a commutative group and Zm with both operations is
said to be a commutative ring. Note that Z with the usual
operations also forms a commutative ring. Groups and rings are
studied in courses that cover “abstract algebra”.

Remark

We will use the notations + and · for +m and ·m whenever we
work with Zm, leaving the subscript implicit.
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4.2: Integer Representations and Algorithms
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Integer representations

Theorem/Definition

Let b be an integer greater than 1. If n is a positive integer, then
it can be expressed uniquely in the form

n = akb
k + ak−1b

k−1 + · · ·+ a1b + a0,

where k is a nonnegative integer, a0, . . . , ak are nonnegative
integers less than b, then ak 6= 0.

Bases 2, 8, 10, and 16 are called binary, octal, decimal, and
hexidecimal expansions respectively.
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Integer representations

Remark

Sixteen different digits are required for hexadecimal expansions.
There are only 10 Arabic numerals, and so typically letters are used
for digits 11-15:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C ,D,E ,F .

Example

What is the decimal expansion of the integer that has
(1 0101 1111)2 as its binary expansion?
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Integer representations

Example

Find the octal expansion of (12345)10.

First, divide 12345 by 8 to obtain

12345 = 8 · 1543 + 1.

Iterating division by 8 on the quotient gives

1543 = 8 · 192 + 7,

192 = 8 · 24 + 0,

24 = 8 · 3 + 0,

3 = 8 · 0 + 3.

The remainders give the digits in octal: (12345)10 = (30071)8.
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4.3: Primes and Greatest Common Divisors
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Primes

Definition

An integer p greater than 1 is called prime if its only positive
factors are 1 and p. A positive integer that is greater than 1 and
not prime is called composite.

Remark

The integer n is composite if and only if there exists an integer a
such that a | n and 1 < a < n.
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Primes

The Fundamental Theorem of Arithmetic

Every integer greater than 1 can be written uniquely as a prime or
as the product of two or more primes, where the prime factors are
written in order of nondecreasing size.
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Trial division

Theorem

If n is a composite integer, then n has a prime divisor less than or
equal to

√
n.

It follows that an integer is prime if it is not divisible by any prime
less than or equal to its square root. This leads to the brute-force
algorithm known as trial division. To use trial division we divide n
by all primes not exceeding

√
n and conclude that n is prime if it is

not divisible by any of these primes.
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The Sieve of Eratosthenes

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

The primes up to 100.
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Primes

Theorem

There are infinitely many primes.

The Prime Number Theorem

The ratio of the number of primes not exceeding x and x
ln x

approaches 1 as x grows large.
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Greatest common divisors and least common multiples

Definition

Let a and b be integers, not both zero. The largest integer d such
that d | a and d | b is called the greatest common divisor of a and
b. This number is denoted gcd(a, b).

Definition

The integers a and b are relatively prime if their greatest common
divisor is 1. Integers a1, a2, . . . , an are pairwise relatively prime if
gcd(ai , aj) = 1 for each pair of distinct indices i 6= j .
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Greatest common divisors and least common multiples

One way to find the greatest common divisor of two positive
integers is to use their prime factorizations. Suppose that

a = pa11 · · · p
an
n , b = pb11 · · · p

bn
n .

Then gcd(a, b) is given by

gcd(a, b) = p
min(a1,b1)
1 · · · pmin(an,bn)

n ,

where min(x , y) is the smallest of the two integers x and y .
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Greatest common divisors and least common multiples

Definition

The least common multiple of the positive integers a and b is the
smallest positive integer that is divisible by both a and b. This
number is denoted lcm(a, b).

Remark

The least common multiple exists because the set of integers
divisible by both a and b is nonempty, and every nonempty set of
positive integers has a least element by the “well-ordering
property”.
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Greatest common divisors and least common multiples

Remark

When a and b have prime factorizations as before, then

lcm(a, b) = p
max(a1,b1)
1 · · · pmax(an,bn)

n .

Theorem

Let a and b be positive integers. Then

ab = gcd(a, b) · lcm(a, b).
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The Euclidean algorithm

Lemma: Descent

Let a = bq + r , where a, b, q, and r are integers. Then
gcd(a, b) = gcd(b, r).

Proof:

If d divides a and b, then d also divides r = a− bq. If d
divides b and r , then d also divides a = bq + r . Since the common
divisors of the pairs (a, b) and (b, r) are the same, they must have
the same greatest common divisor.
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The Euclidean algorithm

Algorithm

Suppose that a and b are positive integers with a ≥ b. Let r0 = a
and r1 = b. Successively applying the division algorithm, we obtain
a sequence:

r0 = r1q1 + r2 (0 ≤ r2 < r1),

r1 = r2q2 + r3 (0 ≤ r3 < r2),

... =
...

rn−2 = rn−1qn−1 + rn(0 ≤ rn < rn−1),

rn−1 = rnqn.

Applying the previous lemma, we have

gcd(a, b) = gcd(r0, r1) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn.
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The Euclidean algorithm

Example

Find the greatest common divisor of 414 and 662 using the
Euclidean algorithm.

662 = 414 · 1 + 248

414 = 248 · 1 + 166

248 = 166 · 1 + 82

166 = 82 · 2 + 2 (Here’s the last nonzero remainder.)

82 = 2 · 41.
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gcds as linear combinations

Theorem: Bézout’s Theorem

If a and b are positive integers, then there exist integers s and t
such that gcd(a, b) = sa + tb. This equation is called Bézout’s
identity, and the integers s and t are called Bézout coefficients of
a and b.
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gcds as linear combinations

Lemma

If a, b, and c are positive integers such that gcd(a, b) = 1 and
a | bc, then a | c.

Proof:

Apply Bézout’s theorem to produce integers s and t with
sa + tb = 1. Multiplying both sides by c , we have

sac + tbc = c .

Because a divides both summands (it appears in sac , and it is
assumed to divide bc which appears in tbc), it also divides c .
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gcds as linear combinations

Lemma

If p is a prime and p | a1a2 · · · an, where each ai is an integer, then
p | ai for some i .

Proof of the uniqueness of prime factorizations

We proceed by contradiction. Suppose that a positive integer n
can be written as the product of primes in two different ways:

n = p1p2 · · · ps , and n = q1q2 · · · qt ,

where p1 ≤ · · · ≤ ps and q1 ≤ · · · ≤ qt . Removing all the common
divisors from the two factorizations, we’re left with

pi1 · · · piu = qj1 · · · qjv (cont’d...)
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gcds as linear combinations

Lemma

If p is a prime and p | a1a2 · · · an, where each ai is an integer, then
p | ai for some i .

Proof of the uniqueness of prime factorizations, cont’d

pi1 · · · piu = qj1 · · · qjv ,

where no prime occurring on the left also occurs on the right. The
lemma guarantees pi1 divides qjk for some k — but no prime
divides another prime, so this is impossible. Hence, it is not
possible to have two distinct prime factorizations of n.
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gcds as linear combinations

Theorem

Let m be a positive integers and let a, b, and c be integers. If
ac ≡ bc (mod m) and gcd(c ,m) = 1, then a ≡ b (mod m).
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