

Discrete Mathematics

Number Theory and Cryptography

Prof. Steven Evans

4.4: Solving Congruences

Solving congruences

Theorem

If a and m are relatively prime integers and $m > 1$, then an inverse of a modulo m exists. Further, this inverse is unique modulo m . (That is, there is a unique positive integer \bar{a} less than m that is an inverse of a modulo m and every other inverse of a modulo m is congruent to \bar{a} modulo m .)

The Chinese Remainder Theorem

Theorem

Let m_1, m_2, \dots, m_n be pairwise relatively prime positive integers greater than one and a_1, a_2, \dots, a_n arbitrary integers. Then the system

$$x \equiv a_1 \pmod{m_1},$$

$$x \equiv a_2 \pmod{m_2},$$

$\vdots \equiv \vdots$

$$x \equiv a_n \pmod{m_n}$$

has a unique solution modulo $m = m_1 \cdots m_n$. (That is, there is a solution x with $0 \leq x < m$, and all other solutions are congruent modulo m to this solution.)

The Chinese Remainder Theorem

Proof of existence

To construct a simultaneous solution, first let $M_k = m/m_k$ for $k = 1, 2, \dots, n$. That is, M_k is the product of the moduli except for m_k . Because m_i and m_k have no common factors greater than 1 when $i \neq k$, it follows that $\gcd(m_k, M_k) = 1$. Consequently, we know there is an integer y_k , an inverse of M_k modulo m_k , such that $M_k y_k \equiv 1 \pmod{m_k}$.

The Chinese Remainder Theorem

Proof of existence

To construct a simultaneous solution, first let $M_k = m/m_k$ for $k = 1, 2, \dots, n$. That is, M_k is the product of the moduli except for m_k . Because m_i and m_k have no common factors greater than 1 when $i \neq k$, it follows that $\gcd(m_k, M_k) = 1$. Consequently, we know there is an integer y_k , an inverse of M_k modulo m_k , such that $M_k y_k \equiv 1 \pmod{m_k}$.

To construct a simultaneous solution, form the sum

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_n M_n y_n.$$

Note that $M_j \equiv 0 \pmod{m_k}$ whenever $j \neq k$. Hence, only the k th term in this sum survives reduction modulo m_k . We then see

$$x \equiv a_k (M_k y_k) \equiv a_k \pmod{m_k}.$$

The Chinese Remainder Theorem

Example

Consider the system

$$x \equiv 2 \pmod{3}, \quad x \equiv 3 \pmod{5}, \quad x \equiv 2 \pmod{7}.$$

We calculate the pieces we need for the proof stated above:

$$m = 3 \cdot 5 \cdot 7 = 105,$$

$$M_1 = m/3 = 35, \quad y_1 \equiv M_1^{-1} \equiv 2 \pmod{3},$$

$$M_2 = m/5 = 21, \quad y_2 \equiv M_2^{-1} \equiv 1 \pmod{5},$$

$$M_3 = m/7 = 15, \quad y_3 \equiv M_3^{-1} \equiv 1 \pmod{7}.$$

Then:

$$x \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + a_3 M_3 y_3$$

$$= 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233 \equiv 23 \pmod{105}.$$

Fermat's Little Theorem

Theorem (Fermat's Little Theorem)

If p is prime and a is an integer not divisible by p , then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Further, for every integer a we have

$$a^p \equiv a \pmod{p}.$$

Fermat's Little Theorem

Example

Find $7^{222} \pmod{11}$.

Fermat's Little Theorem

Example

Find $7^{222} \pmod{11}$.

By Fermat's little theorem, we know that $7^{10} \equiv 1 \pmod{11}$, so $(7^{10})^k \equiv 1 \pmod{11}$ for every positive integer k . Division yields $22 = 22 \cdot 10 + 2$, and hence

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \pmod{11}.$$