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Solving congruences

Theorem

If a and m are relatively prime integers and m > 1, then an inverse
of a modulo m exists. Further, this inverse is unique modulo m.
(That is, there is a unique positive integer ā less than m that is an
inverse of a modulo m and every other inverse of a modulo m is
congruent to ā modulo m.)
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Solving Congruences

The Chinese Remainder Theorem

Theorem

Let m1, m2, . . . , mn be pairwise relatively prime positive integers
greater than one and a1, a2, . . . , an arbitrary integers. Then the
system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),

... ≡
...

x ≡ an (mod mn)

has a unique solution modulo m = m1 · · ·mn. (That is, there is a
solution x with 0 ≤ x < m, and all other solutions are congruent
modulo m to this solution.)
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Solving Congruences

The Chinese Remainder Theorem

Proof of existence

To construct a simultaneous solution, first let Mk = m/mk for
k = 1, 2, . . . , n. That is, Mk is the product of the moduli except
for mk . Because mi and mk have no common factors greater than
1 when i 6= k , it follows that gcd(mk ,Mk) = 1. Consequently, we
know there is an integer yk , an inverse of Mk modulo mk , such
that Mkyk ≡ 1 (mod mk).

To construct a simultaneous solution, form the sum

x = a1M1y1 + a2M2y2 + · · ·+ anMnyn.

Note that Mj ≡ 0 (mod mk) whenever j 6= k. Hence, only the kth
term in this sum survives reduction modulo mk . We then see

x ≡ ak(Mkyk) ≡ ak (mod mk).
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Solving Congruences

The Chinese Remainder Theorem

Example

Consider the system

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 mod 7.

We calculate the pieces we need for the proof stated above:

m = 3 · 5 · 7 = 105,

M1 = m/3 = 35, y1 ≡ M−1
1 ≡ 2 (mod 3),

M2 = m/5 = 21, y2 ≡ M−2
2 ≡ 1 (mod 5),

M3 = m/7 = 15, y3 ≡ M−1
3 ≡ 1 (mod 7).

Then:

x ≡ a1M1y1 + a2M2y2 + a3M3y3

= 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 = 233 ≡ 23 (mod 105).
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Fermat’s Little Theorem

Theorem (Fermat’s Little Theorem)

If p is prime and a is an integer not divisible by p, then

ap−1 ≡ 1 (mod p).

Further, for every integer a we have

ap ≡ a (mod p).
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Fermat’s Little Theorem

Example

Find 7222 (mod 11).

By Fermat’s little theorem, we know that 710 ≡ 1 (mod 11), so
(710)k ≡ 1 (mod 11) for every positive integer k . Division yields
22 = 22 · 10 + 2, and hence

7222 = 722·10+2 = (710)22 · 72 ≡ 122 · 49 ≡ 5 (mod 11).
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