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The Binomial Theorem

Theorem

Let x and y be variables, and let n be a nonnegative integer. Then:

(x + y)n =
n∑

j=0

(
n

j

)
xn−jy j

=

(
n

0

)
xn +

(
n

1

)
xn−1y + · · · +

(
n

n − 1

)
xyn−1 +

(
n

n

)
yn.
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The Binomial Theorem

Corollary

Let n ≥ 0 be a nonnegative integer. Then

n∑
k=0

(
n

k

)
= 2n.

Similarly, when n > 0,

n∑
k=0

(−1)k
(
n

k

)
= 0.
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Pascal’s identity and triangle

Theorem (Pascal’s identity)

Let n and k be positive integers with n ≥ k . Then:(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
.
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Other identities involving binomial coefficients

Theorem (Vandermonde’s identity)

Let m, n, and r be nonnegative integers with r not exceeding
either m or n. Then(

m + n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)
.
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Other identities involving binomial coefficients

Theorem

If n is a nonnegative integer, then(
2n

n

)
=

n∑
k=0

(
n

k

)2

.

Theorem

Let n and r be nonnegative integers with r ≤ n. Then(
n + 1

r + 1

)
=

n∑
j=r

(
j

r

)
.
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Counting with repetition

Theorem

The number of r -permutations of a set of n objects with repetition
allowed is nr .

Theorem

There are C (n + r − 1, r) = C (n + r − 1, n − 1) r -combinations
from a set with n elements when repetition of elements is allowed.
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Counting with repetition

Example

How many solutions does the equation

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers?
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Counting with repetition

Summary

Type Repetition allowed? Formula

r -permutations No n!
(n−r)! ,

r -combinations No n!
r !(n−r)! ,

r -permutations Yes nr ,

r -combinations Yes (n+r−1)!
r !(n−1)! .
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Permutations with indistinguishable objects

Theorem

The number of different permutations of n objects, where there are
n1 indistinguishable objects of type 1, n2 indistinguishable objects
of type 2, . . . , and nk indistinguishable objects of type k, is given
by

n!

n1!n2! · · · nk !
.
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Distributing objects into boxes

Example (Distinguishable objects and distinguishable boxes)

How many ways are there to distribute hands of 5 cards to each of
four players from the standard deck of 52 cards?

Theorem

The number of ways to distribute n distinguishable objects into k
distinguishable boxes such that ni objects are placed into box i ,
i = 1, 2, . . . , k, equals

n!

n1!n2! · · · nk !
.

Prof. Steven Evans Discrete Mathematics



Binomial Coefficients and Identities
Generalized Permutations and Combinations

Distributing objects into boxes

Example (Distinguishable objects and distinguishable boxes)

How many ways are there to distribute hands of 5 cards to each of
four players from the standard deck of 52 cards?

Theorem

The number of ways to distribute n distinguishable objects into k
distinguishable boxes such that ni objects are placed into box i ,
i = 1, 2, . . . , k, equals

n!

n1!n2! · · · nk !
.

Prof. Steven Evans Discrete Mathematics



Binomial Coefficients and Identities
Generalized Permutations and Combinations

Distributing objects into boxes

Example (Indistinguishable objects and distinguishable boxes)

How many ways are there to place 10 indistinguishable balls into
eight distinguishable boxes?

Theorem

There are C (n + r − 1, n − 1) ways to place r indistinguishable
objects into n distinguishable boxes.
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Distributing objects into boxes

Remark (Distinguishable objects and indistinguishable boxes)

There is no simple closed formula for the number of ways to
distribute n distinguishable objects into j indistinguishable boxes.
Let S(n, j), called Stirling numbers of the second kind, denote the
number of ways to distribute n distinguishable objects into j
indistinguishable boxes so that no box is empty. One can show that

S(n, j) =
1

j!

j−1∑
i=0

(−1)i
(
j

i

)
(j − i)n.

Consequently, the number of ways to distribute n distinguishable
objects into k indistinguishable boxes equals

k∑
j=1

S(n, j) =
k∑

j=1

1

j!

j−1∑
i=0

(−1)i
(
j

i

)
(j − i)n.
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Distributing objects into boxes

Remark (Indistinguishable objects and indistinguishable boxes)

Observe that distributing n indistinguishable objects into k
indistinguishable boxes is the same as writing n as the sum of at
most k positive integers in nondecreasing order. If
a1 + · · · + aj = n, where a1 ≥ . . . ≥ aj are positive integers, we say
a1, . . . , aj is a partition of n into j parts. We see that if pk(n) is
the number of partitions of n into at most k parts, then there are
pk(n) ways to distribute n indistinguishable objects into k
indistinguishable boxes. No simple closed form exists for this
number.
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