

Discrete Mathematics

Counting

Prof. Steven Evans

6.4: Binomial Coefficients and Identities

The Binomial Theorem

Theorem

Let x and y be variables, and let n be a nonnegative integer. Then:

$$\begin{aligned}(x + y)^n &= \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j \\&= \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \cdots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n.\end{aligned}$$

The Binomial Theorem

Corollary

Let $n \geq 0$ be a nonnegative integer. Then

$$\sum_{k=0}^n \binom{n}{k} = 2^n.$$

The Binomial Theorem

Corollary

Let $n \geq 0$ be a nonnegative integer. Then

$$\sum_{k=0}^n \binom{n}{k} = 2^n.$$

Similarly, when $n > 0$,

$$\sum_{k=0}^n (-1)^k \binom{n}{k} = 0.$$

Pascal's identity and triangle

Theorem (Pascal's identity)

Let n and k be positive integers with $n \geq k$. Then:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Other identities involving binomial coefficients

Theorem (Vandermonde's identity)

Let m , n , and r be nonnegative integers with r not exceeding either m or n . Then

$$\binom{m+n}{r} = \sum_{k=0}^r \binom{m}{r-k} \binom{n}{k}.$$

Other identities involving binomial coefficients

Theorem

If n is a nonnegative integer, then

$$\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2.$$

Other identities involving binomial coefficients

Theorem

If n is a nonnegative integer, then

$$\binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2.$$

Theorem

Let n and r be nonnegative integers with $r \leq n$. Then

$$\binom{n+1}{r+1} = \sum_{j=r}^n \binom{j}{r}.$$

6.5: Generalized Permutations and Combinations

Counting with repetition

Theorem

The number of r -permutations of a set of n objects with repetition allowed is n^r .

Counting with repetition

Theorem

The number of r -permutations of a set of n objects with repetition allowed is n^r .

Theorem

There are $C(n + r - 1, r) = C(n + r - 1, n - 1)$ r -combinations from a set with n elements when repetition of elements is allowed.

Counting with repetition

Example

How many solutions does the equation

$$x_1 + x_2 + x_3 = 11$$

have, where x_1 , x_2 , and x_3 are nonnegative integers?

Counting with repetition

Summary

Type	Repetition allowed?	Formula
r -permutations	No	$\frac{n!}{(n-r)!}$,
r -combinations	No	$\frac{n!}{r!(n-r)!}$,
r -permutations	Yes	n^r ,
r -combinations	Yes	$\frac{(n+r-1)!}{r!(n-1)!}$.

Permutations with indistinguishable objects

Theorem

The number of different permutations of n objects, where there are n_1 indistinguishable objects of type 1, n_2 indistinguishable objects of type 2, \dots , and n_k indistinguishable objects of type k , is given by

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

Distributing objects into boxes

Example (Distinguishable objects and distinguishable boxes)

How many ways are there to distribute hands of 5 cards to each of four players from the standard deck of 52 cards?

Distributing objects into boxes

Example (Distinguishable objects and distinguishable boxes)

How many ways are there to distribute hands of 5 cards to each of four players from the standard deck of 52 cards?

Theorem

The number of ways to distribute n distinguishable objects into k distinguishable boxes such that n_i objects are placed into box i , $i = 1, 2, \dots, k$, equals

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

Distributing objects into boxes

Example (Indistinguishable objects and distinguishable boxes)

How many ways are there to place 10 indistinguishable balls into eight distinguishable boxes?

Distributing objects into boxes

Example (Indistinguishable objects and distinguishable boxes)

How many ways are there to place 10 indistinguishable balls into eight distinguishable boxes?

Theorem

There are $C(n + r - 1, n - 1)$ ways to place r indistinguishable objects into n distinguishable boxes.

Distributing objects into boxes

Remark (Distinguishable objects and indistinguishable boxes)

There is no simple closed formula for the number of ways to distribute n distinguishable objects into j indistinguishable boxes. Let $S(n, j)$, called *Stirling numbers of the second kind*, denote the number of ways to distribute n distinguishable objects into j indistinguishable boxes so that no box is empty. One can show that

$$S(n, j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n.$$

Consequently, the number of ways to distribute n distinguishable objects into k indistinguishable boxes equals

$$\sum_{j=1}^k S(n, j) = \sum_{j=1}^k \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n.$$

Distributing objects into boxes

Remark (Indistinguishable objects and indistinguishable boxes)

Observe that distributing n indistinguishable objects into k indistinguishable boxes is the same as writing n as the sum of at most k positive integers in nondecreasing order. If

$a_1 + \cdots + a_j = n$, where $a_1 \geq \dots \geq a_j$ are positive integers, we say a_1, \dots, a_j is a *partition* of n into j parts. We see that if $p_k(n)$ is the number of partitions of n into at most k parts, then there are $p_k(n)$ ways to distribute n indistinguishable objects into k indistinguishable boxes. No simple closed form exists for this number.