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Binomial Coefficients and ldentities

6.4: Binomial Coefficients and Identities
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Binomial Coefficients and ldentities

The Binomial Theorem

Let x and y be variables, and let n be a nonnegative integer. Then:

(x+y)"= Zn: (j) X"y

j=0

_(M\ n ny\ n-1 w n—1 ny n
—<O>x +<1)x y+ +<n_1>xy +<n>y.
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Binomial Coefficients and ldentities

The Binomial Theorem

Corollary

Let n > 0 be a nonnegative integer. Then

)+

k=0
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Binomial Coefficients and ldentities

The Binomial Theorem

Corollary

Let n > 0 be a nonnegative integer. Then

)+

k=0

Similarly, when n > 0,
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Binomial Coefficients and ldentities

Pascal’s identity and triangle

Theorem (Pascal’s identity)

Let n and k be positive integers with n > k. Then:

()= () ()
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Binomial Coefficients and ldentities

Other identities involving binomial coefficients

Theorem (Vandermonde's identity)

Let m, n, and r be nonnegative integers with r not exceeding
either m or n. Then

("7)=2(2)0)
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Binomial Coefficients and ldentities

Other identities involving binomial coefficients

If nis a nonnegative integer, then

(-2 ()
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Binomial Coefficients and ldentities

Other identities involving binomial coefficients

If nis a nonnegative integer, then

(-2 ()

Let n and r be nonnegative integers with r < n. Then

(i)-x0)
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Generalized Permutations and Combinations

6.5: Generalized Permutations and Combinations
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Generalized Permutations and Combinations

Counting with repetition

The number of r-permutations of a set of n objects with repetition
allowed is n".
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Generalized Permutations and Combinations

Counting with repetition

The number of r-permutations of a set of n objects with repetition
allowed is n".

Theorem
There are C(n+r —1,r) = C(n+r —1,n— 1) r-combinations
from a set with n elements when repetition of elements is allowed.

| \

v
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Generalized Permutations and Combinations

Counting with repetition

How many solutions does the equation
X1+ x2+x3 =11

have, where x1, x2, and x3 are nonnegative integers?
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Generalized Permutations and Combinations

Counting with repetition

Type Repetition allowed? | Formula
r-permutations | No (nﬁ!,)! ,
r-combinations | No ."7I
ri(n—r)!
r-permutations | Yes n’,
r-combinations | Yes %
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Generalized Permutations and Combinations

Permutations with indistinguishable objects

Theorem

The number of different permutations of n objects, where there are
ny indistinguishable objects of type 1, n» indistinguishable objects
of type 2, ..., and ng indistinguishable objects of type k, is given
by

n!

n1!n2! ~--nk!‘
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Generalized Permutations and Combinations

Distributing objects into boxes

Example (Distinguishable objects and distinguishable boxes)

How many ways are there to distribute hands of 5 cards to each of
four players from the standard deck of 52 cards?
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Generalized Permutations and Combinations

Distributing objects into boxes

Example (Distinguishable objects and distinguishable boxes)

How many ways are there to distribute hands of 5 cards to each of
four players from the standard deck of 52 cards?

The number of ways to distribute n distinguishable objects into k
distinguishable boxes such that n; objects are placed into box i,
i=1,2,...,k, equals

n!
n1!n2! cee nk!’
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Generalized Permutations and Combinations

Distributing objects into boxes

Example (Indistinguishable objects and distinguishable boxes)

How many ways are there to place 10 indistinguishable balls into
eight distinguishable boxes?
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Generalized Permutations and Combinations

Distributing objects into boxes

Example (Indistinguishable objects and distinguishable boxes)

How many ways are there to place 10 indistinguishable balls into
eight distinguishable boxes?

| 5\

Theorem

There are C(n+ r —1,n — 1) ways to place r indistinguishable
objects into n distinguishable boxes.
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Generalized Permutations and Combinations

Distributing objects into boxes

Remark (Distinguishable objects and indistinguishable boxes)

There is no simple closed formula for the number of ways to
distribute n distinguishable objects into j indistinguishable boxes.
Let S(n,j), called Stirling numbers of the second kind, denote the
number of ways to distribute n distinguishable objects into j
indistinguishable boxes so that no box is empty. One can show that

-1

S

=0

Consequently, the number of ways to distribute n distinguishable
objects into k indistinguishable boxes equals

zkjsnj) Z Z () — 0"

J=
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Generalized Permutations and Combinations

Distributing objects into boxes

Remark (Indistinguishable objects and indistinguishable boxes)

Observe that distributing n indistinguishable objects into k
indistinguishable boxes is the same as writing n as the sum of at
most k positive integers in nondecreasing order. If
ay+---+aj=n, where a; > ... > aj are positive integers, we say
ai,...,aj is a partition of n into j parts. We see that if pc(n) is
the number of partitions of n into at most k parts, then there are
pk(n) ways to distribute n indistinguishable objects into k
indistinguishable boxes. No simple closed form exists for this
number.
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