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Bayes’s theorem

Example

We have two boxes. The first contains two green balls and seven
red balls; the second contains four green balls and three red balls.
Bob selects a ball by first choosing one of the two boxes at
random. He then selects one of the balls in this box at random. If
Bob has selected a red ball, what is the probability that he selected
a ball from the first box?
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Bayes’s theorem

Bayes’s Theorem

Suppose that E and F are events from a sample space S such that
p(E ) 6= 0 and p(F ) 6= 0. Then:

p(F | E ) =
p(E | F )p(F )

p(E | F )p(F ) + p(E | F )p(F )
.

Example

Suppose that one person in 100,000 has a particular rare disease
for which there is a diagnostic test. This test is correct 99.0% of
the time when given to a person selected at random who hast he
disease; it is correct 99.5% of the time when given to a person
selected at random who does not have the disease. Find the
probabilities that a person who tests positive has the disease and
that a person who tests negative does not have the disease.
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Bayes’s theorem

Generalized Bayes’s Theorem

Suppose that E is an event from a sample space S such that F1,
F2, . . . , Fn are mutually exclusive events such that

⋃n
i=1 Fi = S .

Assume that p(E ) 6= 0 and p(Fi ) 6= 0 for all i . Then:

p(Fj | E ) =
p(E | Fj)p(Fj)∑n
i=1 p(E | Fi )p(Fi )

.
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7.4: Expected Value and Variance

Prof. Steven Evans Discrete Mathematics



Introduction
Expected Value and Variance

Expected values

Definition

The expected value, also called the expectation or mean, of the
random variable X on the sample space S is equal to

E (X ) =
∑
s∈S

p(s)X (s).

The deviation of X as s ∈ S is X (s)− E (X ), the (signed) distance
from the mean.

Example

A fair coin is flipped three times. Let S be the sample space of the
eight possible outcomes, and let X be the random variable that
assigns to an outcome the number of heads in this outcome. What
is the expected value of X?
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Expected values

Theorem

If X is a random variable and p(X = r) is the probability that
X = r , so that p(X = r) =

∑
s∈S ,X (s)=r p(s), then

E (X ) =
∑

s∈X (S)

p(X = r) · r .

Example

What is the expected value of the sum of the numbers that appear
when a pair of fair dice is rolled?

Theorem

The expected number of successes when n mutually independent
Bernoulli trials are performed, where p is the probability of success
on each trial, is np.
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Linearity of expectations

Theorem

If Xi , i = 1, 2, . . . , n, are random variables on S and if a and b are
real numbers, then

1 E (X1 + X2 + · · ·+ Xn) = E (X1) + E (X2) + · · ·+ E (Xn).

2 E (aX + b) = aE (X ) + b.

Example

A new employee checks the hats of n people at a restaurant,
forgetting to put claim check numbers on the hats. When
customers return for their hats, the checker gives them back hats
chosen at random from the remaining hats. What is the expected
number of hats returned correctly?
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Linearity of expectations

Example

The ordered pair (i , j) is called an inversion in a permutation of
the first n positive integers if i < j but j preceeds i in the
permutation. (For instance, (1, 5) is an inversion in the
permutation (3, 5, 1, 4, 2), but (1, 2) is not.)
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Lineraity of expectations

Example

Let Ii ,j be the random variable on the set of permutations which is
1 is (i , j) is an inversion and 0 if not. If X is the random variable
whose value is the total number of permutations, it follows that

X =
∑

1≤i<j≤n
Ii ,j .

Note that it is equally likely in a randomly chosen permutation for
i to precede j as it is for j to precede i . Hence, E (Ii ,j) = 1/2.
Because there are

(n
2

)
pairs i and j with 1 ≤ i < j ≤ n and by

linearity of expectation, we have

E (X ) =
∑

1≤i<j≤n
E (Ii ,j) =

(
n

2

)
· 1

2
=

n(n − 1)

4
.
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The geometric distribution

Definition

A random variable X has a geometric distribution with parameter
p if p(X = k) = (1− p)k−1p for k ≥ 1, where p is a real number
in the range 0 ≤ p ≤ 1.

Theorem

If the random variable X is geometrically distributed with
parameter p, then E (X ) = 1/p.
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Independent random variables

Definition

The random variables X and Y on a sample space S are
independent if

p(X = r1 ∧ Y = r2) = p(X = r1) · p(Y = r2).

Theorem

If X and Y are independent random variables on a sample space
S , then E (XY ) = E (X )E (Y ).
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Variance

Definition

Let X be a random variable on a sample space S . The variance of
X , denoted by V (X ), is

V (X ) =
∑
s∈S

(X (s)− E (X ))2p(s).

That is, V (X ) is the weighted average of the square of the
deviation of X .

The standard deviation of X , denoted σ(X ), is defined to be√
V (X ).
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Variance

Theorem

If X is a random variable on a sample space S , then
V (X ) = E (X 2)− E (X )2.

Corollary

If X is a random variable on a sample space S and E (X ) = µ, then
V (X ) = E ((X − µ)2).

Example

What is the variance of the random variable X , when X is the
number that comes up when a fair die is rolled?
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Variance

Theorem (Bienaymé’s Formula)

If X and Y are two independent random variables on a sample
space S , then V (X + Y ) = V (X ) + V (Y ). Furthermore, if Xi ,
i = 1, . . . , n, are pairwise independent random variables on S , then

V (X1 + · · ·+ Xn) = V (X1) + · · ·+ V (Xn).

Example

What is the variance of the number of successes when n
independent Bernoulli trials are performed, where on each trial p is
the probability of success and q is the probability of failure?
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Chebyshev’s inequality

Theorem (Chebyshev’s Inequality)

Let X be a random variable on a sample space S with probability
function p. If r is a positive real number, then

p(|X (s)− E (X )| ≥ r) ≤ V (X )/r2.

Example

Suppose that X is the random variable that counts the number of
tails when a fair coin is tossed n times. (Note that X carries a
Bernoulli distribution with parameter p = 1/2.) It follows that
E (X ) = n/2 and V (X ) = n/4. Applying Chebyshev’s inequality
with r =

√
n shows that

p(|X (s)− n/2| ≥
√
n) ≤ (n/4)/(

√
n)2 = 1/4.
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