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Applications of Recurrence Relations

The Tower of Hanoi

Example

A popular puzzle of the late ninetheen century invented by the
French mathematician Edouard Lucas, called the Tower of Hanoi,
consists of three pegs mounted on a board together with disks of
different sizes. Initially these disks are placed ont he first peg in
order of size, with the largest on the bottom. The rules of the
puzzle allow disks to be moved on eat a time from one peg to
another as long as a disk is never placed on top of a smaller disk.
The goal of the puzzle is to have all the disks on the second peg in
order of size, with the largest on the bottom.
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Applications of Recurrence Relations

The Tower of Hanoi

Let H, denote the number of moves needed to solve the Tower of
Hanoi problems with n disks. Set up a recurrence relation for the
sequence {Hp,}.
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Applications of Recurrence Relations

Codeword enumeration

Example

A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance,
1230407869 is valid, whereas 120987045608 is not valid. Let a, be
the number of valid n-digit codewords. Find a recurrence relation
for a,.
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Applications of Recurrence Relations

Codeword enumeration

Example

A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance,
1230407869 is valid, whereas 120987045608 is not valid. Let a, be
the number of valid n-digit codewords. Find a recurrence relation
for a,.

Note that a; = 9 because there are 10 one-digit strings, and only
one, namely, the string 0, which is not valid. Then, a valid string
of n digits can be obstained by appending a valid string of n — 1
digits with a digit other than 0. Also, a valid string of n digits can
be obstained by appending a 0 to a string of length n — 1 that is
not valid. Summing these two cases, we find:

1
ap,=9ap,-1+ (10""* —a,_1)
=8ap,_1 + 10",




Applications of Recurrence Relations

Associations

Example

Find a recurrence relation for C,, the number of ways to
parenthesize the product of n+ 1 numbers xp, ..., x, to specify
the order of multiplication. For example, C3 = 5:

((x0x1)x2)x3, (xo(x1x2))x3, (x0x1)(x2x3),
x0((x1x2)x3), xo(x1(x2x3)).

Prof. Steven Evans Discrete Mathematics



Applications of Recurrence Relations

Associations

Example

Find a recurrence relation for C,, the number of ways to
parenthesize the product of n+ 1 numbers xp, ..., x, to specify
the order of multiplication. For example, C3 = 5:

((x0x1)x2)x3, (xo(x1x2))x3, (x0x1)(x2x3),
x0((x1x2)x3), xo(x1(x2x3)).

This recurrence relation can be solved using the method of
generating functions, which we'll come to in a bit. It can be shown
that C, = nil (2n”). The sequence {C,} is the sequence of Catalan
numbers, named after Eugéne Charles Catalan.
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Solving Linear Recurrence Relations

8.2: Solving Linear Recurrence Relations
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Solving Linear Recurrence Relations

Linear homogeneous recurrences

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

ap = C1ap-1 + -+ Ckan—k,

where c1, ..., ¢k are real numbers and ¢, # 0.
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Solving Linear Recurrence Relations

Linear homogeneous recurrences

Definition
A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

ap = C1ap-1 + -+ Ckan—k,

where c1, ..., ¢k are real numbers and ¢, # 0.

Example

The recurrence relation P, = (1.11)P,_1 is a linear homogeneous
recurrence relation of degree one. The recurrence relation

fn = fn_1 + fo_2 is a linear homogeneous recurrence relation of
degree two. The recurrence relation a, = a,_s is a linear
homogeneous recurrence relation of degree five.
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

The basic approach for solving linear homogeneous recurrence
relations is to look for solutions of the form a, = r", where r is a
constant. Note that a, = r" is a solution of the recurrence relation
ap = c1ap_1+ - + ckan_x if and only if

1

M=cr" 4. 4 gr" k.
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

The basic approach for solving linear homogeneous recurrence
relations is to look for solutions of the form a, = r", where r is a
constant. Note that a, = r" is a solution of the recurrence relation
ap = c1ap_1+ - + ckan_x if and only if

1

M=cr" 4. 4 gr" k.

When both sides of this equation are divided by r"~* and the
right-hand side is subtracted from the left, we obtain the equation

7S — clrkf1 — - —ck_1r—ck = 0.
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

rk — clrk_:l — - —ck_1r—ck = 0.
Consequently, the sequence {a,} with a, = r" is a solution if and
only if r is a solution of this last equation. We call this the
characteristic equation of the recurrence relation. The solutions of
this equation are called the characteristic roots of the recurrence
relation. As we will see, these characteristic roots can be used to
give an explicit formula for all the solutions of the currence relation.
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Let ¢; and ¢ be real numbers. Suppose that r> — c;r — ¢ = 0 has
two distinct roots r; and ry. Then, the sequence {a,} is a solution
of the recurrence relation a, = cia,_1 + can—» if and only if
an=oqr{ +aory forn=0,1,2,... where a; and ay are
constants.
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Theorem

Let ¢; and ¢ be real numbers. Suppose that r> — c;r — ¢ = 0 has
two distinct roots r; and ry. Then, the sequence {a,} is a solution
of the recurrence relation a, = cia,_1 + can—» if and only if
an=oqr{ +aory forn=0,1,2,... where a; and ay are
constants.

We must do two things to prove the theorem. First, it must be
shown that if 1 and r, are the roots of the characteristic equation,
and oy and ap are constants, then the sequence {a,} with

an = aqr{ + aory is a solution of the recurrence relation. Second,
it must be shown that if the sequence {a,} is a solution, then

an = oqr{ + aory for some constants a; and as.
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

First we will show that equations of this form are solutions to the
recurrence. Because r; and r, satisfy r? — c;r — ¢ = 0, it follows
that rl2 =c1rn + ¢ and r22 = c1r» + . From these equations, we
see

n—1 -1 n—2 n—2
Clan—1+ @ap—2 = a(oar "+ aory ")+ c(oar]™ <+ aory ™ )

Prof. Steven Evans Discrete Mathematics



Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

First we will show that equations of this form are solutions to the
recurrence. Because r; and r, satisfy r? — c;r — ¢ = 0, it follows
that rl2 =c1rn + ¢ and r22 = c1r» + . From these equations, we

see

n—1 n—1 n—2 n—2
Clan—1+ @ap—2 = a(oar "+ aory ")+ c(oar]™ <+ aory ™ )

= a1l ?(cin + @) + aary (cin + )
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

First we will show that equations of this form are solutions to the
recurrence. Because r; and r, satisfy r? — c;r — ¢ = 0, it follows
that rl2 =c1rn + ¢ and r22 = c1r» + . From these equations, we
see

Clap—1+ Cap—» = cl(oqrf_1 + a2r2”_1) -+ cz(oqu"_2 + Ot2/’2n_2)
= a1l ?(cin + @) + aary (cin + )

= oclrln_zrl2 + a2r2"_2r22
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

First we will show that equations of this form are solutions to the
recurrence. Because r; and r, satisfy r? — c;r — ¢ = 0, it follows
that rl2 =c1rn + ¢ and r22 = c1r» + . From these equations, we
see

n—1 n—1 n—2 n—2
Clan—1+ @ap—2 = a(oar "+ aory ")+ c(oar]™ <+ aory ™ )

n—2 n—2
=airy “(an + o)+ ary “(carn + o)
= oclrln_zrl2 + a2r2"_2r22

= a1 + azry

= B
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

Now, suppose that {a,} is a solution of the recurrence and that
the initial conditions ag = Cy and a; = C; hold. We can solve for
candidate values for a; and ap by substituting into the equation
an = airf +aars:

ap = Cp = a1 + az,
ap = C =ain +azn.

Solving this linear system for iy and «ay gives

G — G

a1 = )
n—nr

C0r1 — Cl

Q) = ——.
n—nrn
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

G — Gr

o= —,
n—nr

Corl— Cl

oy = ————.
n—nr

(Note that it is now critical that r; # r,.)
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Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

Proof, continued

G — Gr

o= —,
n—nr

Corl— Cl

oy = ————.
n—nr

(Note that it is now critical that r; # r,.) Hence, we have
produced the formula ayr{’ 4 ary which solves the recurrence and
satisfies the two initial condiitons. By uniqueness of solutions to
LHRRwCC with full initial conditions, it follows that this formula
expresses the sequence {a,}.

Prof. Steven Evans Discrete Mathematics



Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Find an explicit formula for the Fibonacci numbers.
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Find an explicit formula for the Fibonacci numbers.

Recall that the Fibonacci numbers are characterized by fy = 0,
fi=1, and f, = f,_1 + f,_>. The roots of the characteristic
equation are r; = (1 ++/5)/2 and rn» = (1 — v/5)/2. Hence,

o (150) ()
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

1+5)" 1-5
foson| —5— | te2| —5—

To solve for the constants, we substitute the known values fo = 0
and f; =1 to get. ..
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

<1+x/§>n
fn:al 5

(=)
a2 >

To solve for the constants, we substitute the known values fo = 0
and f; =1 to get. ..

o1 =1/v/5, oy = —1/v/5.
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

<1+x/§>n
fn:al 5

(=)
a2 >

To solve for the constants, we substitute the known values fo = 0
and f; =1 to get. ..

o1 =1/v/5, oy = —1/v/5.

Consequently:
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Let ¢; and ¢, be real numbers with ¢, # 0. Suppose that

r? — cir — o = 0 has only one root ry. A sequence a, is a solution
of the recurrence relation a, = cia,_1 + can—» if and only if

an = aqry + aonry, where oy and a are constants.
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Theorem

Let ¢; and ¢, be real numbers with ¢, # 0. Suppose that

r? — cir — o = 0 has only one root ry. A sequence a, is a solution
of the recurrence relation a, = cia,_1 + can—» if and only if

an = aqry + aonry, where oy and a are constants.

Example

What is the solution of the recurrence relation a, = 6a,_1 — 9a,_»
with initial conditions ag = 1 and a; = 67
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Theorem

Let ¢; and ¢, be real numbers with ¢, # 0. Suppose that

r? — cir — o = 0 has only one root ry. A sequence a, is a solution
of the recurrence relation a, = cia,_1 + can—» if and only if

an = aqry + aonry, where oy and a are constants.

Example

What is the solution of the recurrence relation a, = 6a,_1 — 9a,_»
with initial conditions ag = 1 and a; = 67

Solution: The sole root of the characteristic equation is 3, hence
an takes the form a, = 13" + asn3".
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Theorem

Let ¢; and ¢, be real numbers with ¢, # 0. Suppose that

r? — cir — o = 0 has only one root ry. A sequence a, is a solution
of the recurrence relation a, = cia,_1 + can—» if and only if

an = aqry + aonry, where oy and a are constants.

Example

What is the solution of the recurrence relation a, = 6a,_1 — 9a,_»
with initial conditions ag = 1 and a; = 67

Solution: The sole root of the characteristic equation is 3, hence
a, takes the form a, = 13" + a»n3". Using the initial conditions,
one finds &1 = oo = 1, and hence a, = 3" + n3".
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Solving Linear Recurrence Relations

L.H.R.Rw.C.Cs

Let c1, ..., ckx be real numbers. Suppose that the characteristic
equation

K—aqrt— ... — =0
has k distinct roots r, ..., rk. Then, a sequence {a,} is a solution

of the recurrence
ap = C1ap-1+ -+ Ckan—k

if and only if
an = our +oory + - 4 okry,

where aq, ..., ay are constants.
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Solving Linear Recurrence Relations

L.HR.Rw.C.Cs
Let c1,...,cx € R, and suppose that the equation
rF—arf - =0
has t distinct roots ry, ..., r: with multiplicities my, ..., m; > 1

respectively. Then, {a,} is a solution of the recurrence
ap = C1ap—1+ -+ Ckan—«k

if and only if it has the form

t mi—1

dn = a,-d-n/r,-,

i=1 j=0

where the «; ; are constants.
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

The recurrence relation a, = 3a,_1 + 2n is an example of a linear

nonhomogeneous recurrence relation with constant coefficients,
that is, a recurrence relation of the form

apn=capn-1+- -+ ckan—k + F(n),

where ci, ..., ¢ are real numbers and F(n) is a function not
identically zero depending only on n.
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

The recurrence relation a, = 3a,_1 + 2n is an example of a linear

nonhomogeneous recurrence relation with constant coefficients,
that is, a recurrence relation of the form

apn=capn-1+- -+ ckan—k + F(n),

where ci, ..., ¢ are real numbers and F(n) is a function not
identically zero depending only on n. The same recurrence with
F(n) omitted is called the associated homogeneous recurrence
relation. It plays an important role in the solution of the
nonhomogeneous recurrence relation.
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Theorem

If {aE,P)} is a particular solution of the nonhomogeneous linear
recurrence relation with constant coefficients

ap = clapn—1+ -+ ckan—kF(n),

then every solution is of the form {ag,p) + ag,h)}, where {ag,h)} is a

solution of the associated homogeneous recurrence relation.
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Proof

Suppose that {b,} is a solution of the nonhomogeneous recurrence

relation. Substituting both it and {a(p)} into the recurrence
relation formula and subtracting, one finds

bn—a) = c1(bp-13P)) + - -+ ci(bn_i — 3P ) + (F(n) — F(n)).

It follows that {b, — ag,p)} is a solution of the associated

homogeneous linear recurrence, and hence b, = af,p) ( ).
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Find all solutions of the recurrence relation a, = 3a,_1 + 2n.
What is the solution with a; = 37
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

Find all solutions of the recurrence relation a, = 3a,_1 + 2n.
What is the solution with a; = 37

The associated homogeneous recurrence is a, = 3a,—1, which is

solved by ag,h) = a3" for any constant a.
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

Find all solutions of the recurrence relation a, = 3a,_1 + 2n.
What is the solution with a; = 37

The associated homogeneous recurrence is a, = 3a,—1, which is
solved by ag,h) = a3" for any constant a.

Because F(n) = 2n is a polynomial in n of degree 1, a reasonable
trial solution is p, = cn + d for constants ¢ and d. Suppose that

there is a such a solution p,; then,

an, = 3ap_1+2n
cn+d=3(c(n—1)+d)+2n
0n+0=(2c+2)n+ (2d — 3c¢).
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Solution, continued

It follows that ¢ = —1 and d = —3/2, and hence all solutions take
the form

ap=aP +a) = —n— g + a3".

To satisfy the initial condition, we set o = 11/6.
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Find all solutions of the recurrence relation

ap =5a,_1 —6a,_o»+7".
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Find all solutions of the recurrence relation

ap =5a,_1 —6a,_o»+7".

The solutions of the associated homogeneous recurrence are

ag,h) = 13" + ay2".
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Find all solutions of the recurrence relation

ap =5a,_1 —6a,_o»+7".

The solutions of the associated homogeneous recurrence are
h
aS, ) = 13" + ay2".

Because F(n) = 7", a reasonable trial solution is aP) =c.1.
Making the substitution and solving for C gives C = 49/20, and

hence af) = (49/20) - 7" is a particular solution.
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Solving Linear Recurrence Relations

L.N.RRw.C.Cs
(Bample

Example
Find all solutions of the recurrence relation

ap =5a,_1 —6a,_o»+7".

The solutions of the associated homogeneous recurrence are
h
aS, ) = 13" + ay2".

Because F(n) = 7", a reasonable trial solution is aP) =c.1.
Making the substitution and solving for C gives C = 49/20, and
hence af) = (49/20) - 7" is a particular solution. Hence, a
complete parametrization of solutions is:

an=oa1-3"+ay- 2"+ (49/20) - 7"




Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Theorem

Suppose that {a,} satisfies the linear nonhomogeneous recurrence

relation
an = C1lapn-1+ -+ ckan—k + F(n),
where ¢y, ..., ¢k are real numbers and
F(n) = (ben® + -+ + bin+ by)s",
where by, ..., b; and s are real numbers. When s is not a root of

the characteristic equation of the associated linear homogeneous
recurrence, there is a particular solution of the form

(ptnt + -+ + p1n+ po)s". When s is a root of this characteristic
equation and its multiplicity is m, there is a particular solution of
the form

m t n
n"(pent + -+ pin+ po)s”.




Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

What form does a particular solution of the linear
nonhomogeneous recurrence

ap =6a,_1 —9ap_2 + F(n)

have when F(n) = 3", F(n) = n3", F(n) = n?2", and
F(n) = (n? +1)3"?
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

What form does a particular solution of the linear
nonhomogeneous recurrence

ap =6a,_1 —9ap_2 + F(n)

have when F(n) = 3", F(n) = n3", F(n) = n?2", and
F(n) = (n? +1)3"?

| F(n) | &P
3n p0n23n
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

What form does a particular solution of the linear
nonhomogeneous recurrence

ap =6a,_1 —9ap_2 + F(n)

have when F(n) = 3", F(n) = n3", F(n) = n?2", and
F(n) = (n? +1)3"?

HOBMER
3n p0n23n
n3" n*(p1n+ po)3"
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

What form does a particular solution of the linear
nonhomogeneous recurrence

ap =6a,_1 —9ap_2 + F(n)

have when F(n) = 3", F(n) = n3", F(n) = n?2", and
F(n) = (n? +1)3"?

OB ER |
3n p0n23n
n3" n*(p1n+ po)3"
n*2" (p2n® + p1n + po)2"
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Solving Linear Recurrence Relations

L.N.R.R.w.C.C.s

Example

What form does a particular solution of the linear
nonhomogeneous recurrence

ap =6a,_1 —9ap_2 + F(n)

have when F(n) = 3", F(n) = n3", F(n) = n?2", and
F(n) = (n? +1)3"?

OB ER |
3n p0n23n
n3" n*(p1n+ po)3"
n*2" (p2n® + p1n + po)2"
(n* +1)3" || n*(p2n® 4 p1n + po)3”
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