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The Tower of Hanoi

Example

A popular puzzle of the late ninetheen century invented by the
French mathematician Édouard Lucas, called the Tower of Hanoi,
consists of three pegs mounted on a board together with disks of
different sizes. Initially these disks are placed ont he first peg in
order of size, with the largest on the bottom. The rules of the
puzzle allow disks to be moved on eat a time from one peg to
another as long as a disk is never placed on top of a smaller disk.
The goal of the puzzle is to have all the disks on the second peg in
order of size, with the largest on the bottom.
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The Tower of Hanoi

Example

Let Hn denote the number of moves needed to solve the Tower of
Hanoi problems with n disks. Set up a recurrence relation for the
sequence {Hn}.
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Codeword enumeration

Example

A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance,
1230407869 is valid, whereas 120987045608 is not valid. Let an be
the number of valid n-digit codewords. Find a recurrence relation
for an.

Note that a1 = 9 because there are 10 one-digit strings, and only
one, namely, the string 0, which is not valid. Then, a valid string
of n digits can be obstained by appending a valid string of n − 1
digits with a digit other than 0. Also, a valid string of n digits can
be obstained by appending a 0 to a string of length n − 1 that is
not valid. Summing these two cases, we find:

an = 9an−1 + (10n−1 − an−1)

= 8an−1 + 10n−1.
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Associations

Example

Find a recurrence relation for Cn, the number of ways to
parenthesize the product of n + 1 numbers x0, . . . , xn to specify
the order of multiplication. For example, C3 = 5:

((x0x1)x2)x3, (x0(x1x2))x3, (x0x1)(x2x3),

x0((x1x2)x3), x0(x1(x2x3)).

This recurrence relation can be solved using the method of
generating functions, which we’ll come to in a bit. It can be shown
that Cn = 1

n+1

(2n
n

)
. The sequence {Cn} is the sequence of Catalan

numbers, named after Eugène Charles Catalan.
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8.2: Solving Linear Recurrence Relations
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Linear homogeneous recurrences

Definition

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

an = c1an−1 + · · ·+ ckan−k ,

where c1, . . . , ck are real numbers and ck 6= 0.

Example

The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous
recurrence relation of degree one. The recurrence relation
fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of
degree two. The recurrence relation an = an−5 is a linear
homogeneous recurrence relation of degree five.

Prof. Steven Evans Discrete Mathematics



Applications of Recurrence Relations
Solving Linear Recurrence Relations

Linear homogeneous recurrences

Definition

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

an = c1an−1 + · · ·+ ckan−k ,

where c1, . . . , ck are real numbers and ck 6= 0.

Example

The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous
recurrence relation of degree one. The recurrence relation
fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of
degree two. The recurrence relation an = an−5 is a linear
homogeneous recurrence relation of degree five.

Prof. Steven Evans Discrete Mathematics



Applications of Recurrence Relations
Solving Linear Recurrence Relations

Solving L.H.R.R.w.C.C.

The basic approach for solving linear homogeneous recurrence
relations is to look for solutions of the form an = rn, where r is a
constant. Note that an = rn is a solution of the recurrence relation
an = c1an−1 + · · ·+ ckan−k if and only if

rn = c1r
n−1 + · · ·+ ck r

n−k .

When both sides of this equation are divided by rn−k and the
right-hand side is subtracted from the left, we obtain the equation

rk − c1r
k−1 − · · · − ck−1r − ck = 0.
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Solving L.H.R.R.w.C.C.

rk − c1r
k−1 − · · · − ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn is a solution if and
only if r is a solution of this last equation. We call this the
characteristic equation of the recurrence relation. The solutions of
this equation are called the characteristic roots of the recurrence
relation. As we will see, these characteristic roots can be used to
give an explicit formula for all the solutions of the currence relation.
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Solving L.H.R.R.w.C.C.

Theorem

Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has
two distinct roots r1 and r2. Then, the sequence {an} is a solution
of the recurrence relation an = c1an−1 + c2an−2 if and only if
an = α1r

n
1 + α2r

n
2 for n = 0, 1, 2, . . . where α1 and α2 are

constants.

We must do two things to prove the theorem. First, it must be
shown that if r1 and r2 are the roots of the characteristic equation,
and α1 and α2 are constants, then the sequence {an} with
an = α1r

n
1 + α2r

n
2 is a solution of the recurrence relation. Second,

it must be shown that if the sequence {an} is a solution, then
an = α1r

n
1 + α2r

n
2 for some constants α1 and α2.
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Solving L.H.R.R.w.C.C.

Proof, continued

First we will show that equations of this form are solutions to the
recurrence. Because r1 and r2 satisfy r2 − c1r − c2 = 0, it follows
that r21 = c1r2 + c2 and r22 = c1r2 + c2. From these equations, we
see

c1an−1 + c2an−2 = c1(α1r
n−1
1 + α2r

n−1
2 ) + c2(α1r

n−2
1 + α2r

n−2
2 )

= α1r
n−2
1 (c1r1 + c2) + α2r

n−2
2 (c1r2 + c2)

= α1r
n−2
1 r21 + α2r

n−2
2 r22

= α1r
n
1 + α2r

n
2

= an.
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Solving L.H.R.R.w.C.C.

Proof, continued

Now, suppose that {an} is a solution of the recurrence and that
the initial conditions a0 = C0 and a1 = C1 hold. We can solve for
candidate values for α1 and α2 by substituting into the equation
an = α1r

n
1 + α2r

n
2 :

a0 = C0 = α1 + α2,

a1 = C1 = α1r1 + α2r2.

Solving this linear system for α1 and α2 gives

α1 =
C1 − C0r2
r1 − r2

,

α2 =
C0r1 − C1

r1 − r2
.
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Solving L.H.R.R.w.C.C.

Proof, continued

α1 =
C1 − C0r2
r1 − r2

,

α2 =
C0r1 − C1

r1 − r2
.

(Note that it is now critical that r1 6= r2.)

Hence, we have
produced the formula α1r

n
1 + α2r

n
2 which solves the recurrence and

satisfies the two initial condiitons. By uniqueness of solutions to
LHRRwCC with full initial conditions, it follows that this formula
expresses the sequence {an}.
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L.H.R.R.w.C.C.s

Example

Find an explicit formula for the Fibonacci numbers.

Recall that the Fibonacci numbers are characterized by f0 = 0,
f1 = 1, and fn = fn−1 + fn−2. The roots of the characteristic
equation are r1 = (1 +

√
5)/2 and r2 = (1−

√
5)/2. Hence,

fn = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

.
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L.H.R.R.w.C.C.s

fn = α1

(
1 +
√

5

2

)n

+ α2

(
1−
√

5

2

)n

.

To solve for the constants, we substitute the known values f0 = 0
and f1 = 1 to get. . .

α1 = 1/
√

5, α2 = −1/
√

5.

Consequently:

fn =
1√
5

(
1 +
√

5

2

)n

+
−1√

5

(
1−
√

5

2

)n

.
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L.H.R.R.w.C.C.s
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L.H.R.R.w.C.C.s
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L.H.R.R.w.C.C.s

Theorem

Let c1 and c2 be real numbers with c2 6= 0. Suppose that
r2 − c1r − c2 = 0 has only one root r0. A sequence an is a solution
of the recurrence relation an = c1an−1 + c2an−2 if and only if
an = α1r

n
0 + α2nr

n
0 , where α1 and α2 are constants.

Example

What is the solution of the recurrence relation an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Solution: The sole root of the characteristic equation is 3, hence
an takes the form an = α13n + α2n3n. Using the initial conditions,
one finds α1 = α2 = 1, and hence an = 3n + n3n.
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L.H.R.R.w.C.C.s

Theorem

Let c1, . . . , ck be real numbers. Suppose that the characteristic
equation

rk − c1r
k−1 − · · · − ck = 0

has k distinct roots r1, . . . , rk . Then, a sequence {an} is a solution
of the recurrence

an = c1an−1 + · · ·+ ckan−k

if and only if
an = α1r

n
1 + α2r

n
2 + · · ·+ αk r

n
k ,

where α1, . . . , αk are constants.
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L.H.R.R.w.C.C.s

Theorem

Let c1, . . . , ck ∈ R, and suppose that the equation

rk − c1r
k−1 − · · · − ck = 0

has t distinct roots r1, . . . , rt with multiplicities m1, . . . ,mt ≥ 1
respectively. Then, {an} is a solution of the recurrence

an = c1an−1 + · · ·+ ckan−k

if and only if it has the form

an =
t∑

i=1

mi−1∑
j=0

αi ,jn
j rni ,

where the αi ,j are constants.
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L.N.R.R.w.C.C.s

Definition

The recurrence relation an = 3an−1 + 2n is an example of a linear
nonhomogeneous recurrence relation with constant coefficients,
that is, a recurrence relation of the form

an = c1an−1 + · · ·+ ckan−k + F (n),

where c1, . . . , ck are real numbers and F (n) is a function not
identically zero depending only on n.

The same recurrence with
F (n) omitted is called the associated homogeneous recurrence
relation. It plays an important role in the solution of the
nonhomogeneous recurrence relation.
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L.N.R.R.w.C.C.s

Theorem

If {a(p)n } is a particular solution of the nonhomogeneous linear
recurrence relation with constant coefficients

an = c1an−1 + · · ·+ ckan−kF (n),

then every solution is of the form {a(p)n + a
(h)
n }, where {a(h)n } is a

solution of the associated homogeneous recurrence relation.
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L.N.R.R.w.C.C.s

Proof

Suppose that {bn} is a solution of the nonhomogeneous recurrence

relation. Substituting both it and {a(p)n } into the recurrence
relation formula and subtracting, one finds

bn− a
(p)
n = c1(bn−1a

(p)
n−1) + · · ·+ ck(bn−k − a

(p)
n−k) + (F (n)−F (n)).

It follows that {bn − a
(p)
n } is a solution of the associated

homogeneous linear recurrence, and hence bn = a
(p)
n + a

(h)
n .
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L.N.R.R.w.C.C.s

Example

Find all solutions of the recurrence relation an = 3an−1 + 2n.
What is the solution with a1 = 3?

The associated homogeneous recurrence is an = 3an−1, which is

solved by a
(h)
n = α3n for any constant α.

Because F (n) = 2n is a polynomial in n of degree 1, a reasonable
trial solution is pn = cn + d for constants c and d . Suppose that
there is a such a solution pn; then,

an = 3an−1 + 2n

cn + d = 3(c(n − 1) + d) + 2n

0n + 0 = (2c + 2)n + (2d − 3c).
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Find all solutions of the recurrence relation an = 3an−1 + 2n.
What is the solution with a1 = 3?

The associated homogeneous recurrence is an = 3an−1, which is

solved by a
(h)
n = α3n for any constant α.

Because F (n) = 2n is a polynomial in n of degree 1, a reasonable
trial solution is pn = cn + d for constants c and d . Suppose that
there is a such a solution pn; then,

an = 3an−1 + 2n
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Solution, continued

It follows that c = −1 and d = −3/2, and hence all solutions take
the form

an = a
(p)
n + a

(h)
n = −n − 3

2
+ α3n.

To satisfy the initial condition, we set α = 11/6.
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Example

Find all solutions of the recurrence relation

an = 5an−1 − 6an−2 + 7n.

The solutions of the associated homogeneous recurrence are

a
(h)
n = α13n + α22n.

Because F (n) = 7n, a reasonable trial solution is a
(p)
n = C · 7n.

Making the substitution and solving for C gives C = 49/20, and

hence a
(p)
n = (49/20) · 7n is a particular solution. Hence, a

complete parametrization of solutions is:

an = α1 · 3n + α2 · 2n + (49/20) · 7n.
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Theorem

Suppose that {an} satisfies the linear nonhomogeneous recurrence
relation

an = c1an−1 + · · ·+ ckan−k + F (n),

where c1, . . . , ck are real numbers and

F (n) = (btn
t + · · ·+ b1n + b0)sn,

where b0, . . . , bt and s are real numbers. When s is not a root of
the characteristic equation of the associated linear homogeneous
recurrence, there is a particular solution of the form
(ptn

t + · · ·+ p1n + p0)sn. When s is a root of this characteristic
equation and its multiplicity is m, there is a particular solution of
the form

nm(ptn
t + · · ·+ p1n + p0)sn.
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Example

What form does a particular solution of the linear
nonhomogeneous recurrence

an = 6an−1 − 9an−2 + F (n)

have when F (n) = 3n, F (n) = n3n, F (n) = n22n, and
F (n) = (n2 + 1)3n?

F (n) a
(p)
n

3n p0n
23n

n3n n2(p1n + p0)3n

n22n (p2n
2 + p1n + p0)2n

(n2 + 1)3n n2(p2n
2 + p1n + p0)3n
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