
Generating Functions
Inclusion-Exclusion

Discrete Mathematics
Advanced Counting Techniques

Prof. Steven Evans

Prof. Steven Evans Discrete Mathematics



Generating Functions
Inclusion-Exclusion

8.4: Generating Functions

Prof. Steven Evans Discrete Mathematics



Generating Functions
Inclusion-Exclusion

Generating functions

Definition

The generating function for the sequence a0, a1, . . . , ak , . . . of real
numbers is the infinite series

G (x) = a0 + a1x + · · ·+ akx
k + · · · =

∞∑
k=0

akx
k .

Remark

We can define generating functions for finite sequences of real
numbers by extending a finite sequence a0, a1, . . . , an into an
infinite sequence by setting an+1 = 0, an+2 = 0, and so on. The
generating function G (x) of this infinite sequence {an} is a
polynomial of degree n:

G (x) = a0 + a1x + · · ·+ anx
n.
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Generating functions

Example

Let m be a positive integer. Let ak = C (m, k) for
k = 0, 1, 2, . . . ,m. What is the generating function for the
sequence a0, a1, . . . , am?

The generating function for this sequence is

G (x) =

(
m

0

)
+

(
m

1

)
x +

(
m

2

)
x2 + · · ·+

(
m

m

)
xm = (1 + x)m.
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Useful facts about power series

Example

The function f (x) = 1/(1− ax) is the generating function of the
sequence 1, a, a2, a3, . . . , because

1

1− ax
= 1 + ax + a2x2 + · · ·

when |ax | < 1, or equivalently, for |x | < 1/|a| for a 6= 0.
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Useful facts about power series

Theorem

Let f (x) =
∑∞

k=0 akx
k and g(x) =

∑∞
k=0 bkx

k . Then:

f (x) + g(x) =
∞∑
k=0

(ak + bk)xk ,

f (x) · g(x) =
∞∑
k=0

 k∑
j=0

ajbk−j

 xk .
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Useful facts about power series

Example

Let f (x) = 1/(1− x)2. Find the coefficients for its Taylor
expansion.

We know that 1/(1− x) = 1 + x + x2 + · · · . Using the product
expansion theorem, we then have

1/(1− x)2 =
∞∑
k=0

 k∑
j=0

1

 xk =
∞∑
k=0

(k + 1)xk .
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Useful facts about power series

Definition

Let u be a real number and k a nonnegative integer. Then the
extended binomial coefficient

(u
k

)
is defined as:(

u

k

)
=

{
u(u − 1) · · · (u − k + 1)/k! if k > 0,

1 if k = 0.
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Useful facts about power series

Example

When u = −n is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary one:(

−n
r

)
=

(−n)(−n − 1) · · · (−n − r + 1)

r !

=
(−1)rn(n + 1) · · · (n + r − 1)

r !

=
(−1)r (n + r − 1)(n + r − 2) · · · n

r !

=
(−1)r (n + r − 1)!

r !(n − 1)!

= (−1)r
(
n + r − 1

r

)
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Useful facts about power series

Theorem

Let x be a real number with |x | < 1 and let u be a real number.
Then:

(1 + x)u =
∞∑
k=0

(
u

k

)
xk .

Example

Find the generating function for (1 + x)−n and (1− x)−n, where n
is a positive integer.
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Useful facts about power series

Solution

Using the extended binomial theorem, we have

(1 + x)−n =
∞∑
k=0

(
−n
k

)
xk .

There is a nice expression for these coefficients:

(1 + x)−n =
∞∑
k=0

(−1)k
(
n + k − 1

k

)
xk .

Replacing x by −x , we also find that

(1− x)−n =
∞∑
k=0

(
n + k − 1

k

)
xk .
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Useful facts about power series

Example

Find the number of solutions of e1 + e2 + e3 = 17, where e1, e2,
and e3 are nonnegative integers with 1 + i ≤ ei ≤ 4 + i .

The number of solutions with the indicated constraints is the
coefficient of x17 in the expansion of

(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7).

Explicit expansion shows this coefficient to be 3. (Note that
performing the expansion is about as much work as an explicit
enumeration of the solutions.)
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Useful facts about power series

Example

Use generating functions to determine the number of ways to insert
tokes with $1, $2, and $5 into a vending machine to pay for an
item that costs r dollars in both the cases when the order in which
the tokens are inserted does not matter and when the order does
matter. (For example: there are two ways to pay for an item that
costs $3 when the order does not matter and three when it does.)
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Useful facts about power series

Solution: Unordered

Because we can use any number of $1, $2, and $5 tokens, the
answer is the coefficient of x r in the generating function

(1 + x + x2 + · · · )(1 + x2 + x4 + · · · )(1 + x5 + x10 + · · · ).

For example, the number of ways to pay for an item costing $7 is
given by the coefficient of x7, which is 6.
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Useful facts about power series

Solution: Ordered

The number of ways to insert exactly n tokens to produce a total
of r dollars is the coefficient of r in (x + x2 + x5)r . Because any
number of tokens can be inserted, we are really interested in the
coefficient of x r in the sum

1 + (x + x2 + x5) + (x + x2 + x5)2 + · · · =
1

1− (x + x2 + x5)
.

The number of ways to pay for an item costing $7 is 26.
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Using generating functions to solve recurrence relations

Example

Solve the recurrence relation ak = 3ak−1 and initial condition
a0 = 2.

Let G (x) be the associated generating function. Note that xG (x)
is the generating function for a shift of this sequence, and hence
the recurrence relation becomes

G (x)− 3xG (x) =
∞∑
k=0

akx
k − 3

∞∑
k=1

ak−1x
k

= a0 +
∞∑
k=1

(ak − 3ak−1)xk = 2.

Thus, G (x)− 3xG (x) = 2.
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Using generating functions to solve recurrence relations

Example

Suppose that a valid codeword is an n-digit number in decimal
notation containing an even number of 0s, and let an denote the
number of valid codewords of length n. We’ve previously shown
this satisfies the recurrence an = 8an−1 + 10n−1 with initial
condition a1 = 9. Use generating functions to find an explicit
formula for an.
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Using generating functions to solve recurrence relations

Solution

To make life simpler, we set a0 = 1, which is consistent with our
recurrence. Multiplying the recurrence by xn, we get
anx

n = 8an−1x
n + 10n−1xn. Writing G (x) for the generating

function for an and summing this equation over n, we find

G (x)− 1 =
∞∑
n=1

(8an−1x
n + 10n−1xn)

= 8x
∞∑
n=1

an−1x
n−1 + x

∞∑
n=1

10n−1xn−1

= 8xG (x) + x/(1− 10x).
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Using generating functions to solve recurrence relations

Solution, continued

G (x)− 1 = 8xG (x) + 1/(1− 10x).

Solving for G (x) gives

G (x) =
1− 9x

(1− 8x)(1− 10x)
=

1

2

(
1

1− 8x
+

1

1− 10x

)
.

Expanding this last expression using series, we find

G (x) =
1

2

( ∞∑
n=0

8nxn +
∞∑
n=0

10nxn

)
=
∞∑
n=0

1

2
(8n + 10n)xn.

Consequently, an = 1
2(8n + 10n).
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Using generating functions to solve recurrence relations

Solution, continued

G (x)− 1 = 8xG (x) + 1/(1− 10x).

Solving for G (x) gives

G (x) =
1− 9x

(1− 8x)(1− 10x)
=

1

2

(
1

1− 8x
+

1

1− 10x

)
.

Expanding this last expression using series, we find

G (x) =
1

2

( ∞∑
n=0

8nxn +
∞∑
n=0

10nxn

)
=
∞∑
n=0

1

2
(8n + 10n)xn.

Consequently, an = 1
2(8n + 10n).

Prof. Steven Evans Discrete Mathematics



Generating Functions
Inclusion-Exclusion

Proving identities via generating functions

Example

Use generating functions to show that
∑n

k=0

(n
k

)2
=
(2n
n

)
.

First note that
(2n
n

)
is the coefficient of xn in (1 + x)2n. However,

we also have

(1 + x)2n = ((1 + x)n)2 =

 n∑
j=0

(
n

j

)
x j

2

.

The coefficient of xn in this expression is(
n

0

)(
n

n

)
+

(
n

1

)(
n

n − 1

)
+ · · ·+

(
n

n

)(
n

0

)
=

n∑
k=0

(
n

k

)2

.
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8.5: Inclusion-Exclusion
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The principle of inclusion-exclusion

Principle

The number of elements in the union of the two sets A and B is
the sum of the numbers of elements in the sets minus the number
of elements in their intersection. That is,

|A ∪ B| = |A|+ |B| − |A ∩ B|.
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The principle of inclusion-exclusion

Theorem

Let A1, . . . ,An be finite sets, and let A = A1 ∪ · · · ∪ An. Then

|A| =
∑
i

|Ai | −
∑
i<j

|Ai ∩ Aj |+ · · ·+ (−1)n+1|A1 ∩ · · · ∩ An|.

Proof

Suppose that a is a member of exactly r of the sets. Then a is
counted

(r
1

)
times by the first sum,

(r
2

)
times by the second sum

— and counted
( r
m

)
by the mth sum. Thus, a is counted(

r

1

)
−
(
r

2

)
+

(
r

3

)
− · · ·+ (−1)r

(
r

r

)
times in all. Considering the expansion of (1− 1)r , we see that the
above expression is equal to 1. Thus, each member of A is counted
exactly once by the right-hand sequence of sums, so it equals |A|.
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The principle of inclusion-exclusion

Example

Give a formula for the number of elements in the union of four
arbitrary sets: A1,A2,A3,A4.

|A1 ∪ A2 ∪ A3 ∪ A4| = |A1|+ |A2|+ |A3|+ |A4|
− |A1 ∩ A2| − |A1 ∩ A3| − |A1 ∩ A4|
− |A2 ∩ A3| − |A2 ∩ A4| − |A3 ∩ A4|
+ |A1 ∩ A2 ∩ A3|+ |A1 ∩ A2 ∩ A4|
+ |A1 ∩ A3 ∩ A4|+ |A2 ∩ A3 ∩ A4|
− |A1 ∩ A2 ∩ A3 ∩ A4|.
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