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Generating Functions

Generating functions

The generating function for the sequence ag, a1, . . ., ak, . .. of real
numbers is the infinite series

o0
G(X):ao+alx+---—|—akxk+...:Zakxk.
k=0
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Generating Functions

Generating functions

The generating function for the sequence ag, a1, . . ., ak, . .. of real
numbers is the infinite series

o0
G(X):ao+alx+---—|—akxk+...:Zakxk.
k=0

Remark

We can define generating functions for finite sequences of real
numbers by extending a finite sequence ag, a1, . .., a, into an
infinite sequence by setting a,11 =0, a,412 =0, and so on. The
generating function G(x) of this infinite sequence {a,} is a
polynomial of degree n:

G(X) =ag+aix+ -+ apx".
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Generating Functions

Generating functions

Example

Let m be a positive integer. Let ax = C(m, k) for
k=0,1,2,..., m. What is the generating function for the
sequence ag, a1, ..., am?
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Generating Functions

Generating functions

Example

Let m be a positive integer. Let ax = C(m, k) for
k=0,1,2,..., m. What is the generating function for the
sequence ag, a1, ..., am?

The generating function for this sequence is

6(x) = (’g]) ; (T)x+ (’g>x2+...+ <:>Xm
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Generating Functions

Generating functions

Example

Let m be a positive integer. Let ax = C(m, k) for
k=0,1,2,..., m. What is the generating function for the
sequence ag, a1, ..., am?

The generating function for this sequence is

G(x) = (2;) + <T>X+ <';>x2 +---+ <:>x"’ = (1+x)™.
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Generating Functions

Useful facts about power series

Example
The function f(x) = 1/(1 — ax) is the generating function of the
sequence 1, a, a, a3, ..., because

1

=1l4ax+ax+--
1—ax

when |ax| < 1, or equivalently, for |x| < 1/|a| for a # 0.
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Generating Functions

Useful facts about power series

Let f(x) = > 7 akx® and g(x) = D32, buxk. Then:

f(x) +g(x) =D (ak + bi)x,
k=0
f(x)-g( :i Zajbk il xR

x
Il
o
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Generating Functions

Useful facts about power series

Let f(x) = 1/(1 — x)?. Find the coefficients for its Taylor
expansion.
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Generating Functions

Useful facts about power series

Example
Let f(x) = 1/(1 — x)?. Find the coefficients for its Taylor
expansion.

We know that 1/(1 — x) = 1+ x + x? + ---. Using the product
expansion theorem, we then have

00 k 0o
1/(1—x)? = Z Zl xk = Z(k+ 1)xk.

k=0 \ j=0 k=0

Prof. Steven Evans Discrete Mathematics



Generating Functions

Useful facts about power series

Let u be a real number and k a nonnegative integer. Then the
extended binomial coefficient (}) is defined as:

1 if k=0.

<u> :{u(u—l)---(u—k~|—1)/k! if k>0,
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Generating Functions

Useful facts about power series

When u = —n is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary one:

<—n> (=n)(=n—1)--(—n—r+1)

r r!
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Generating Functions

Useful facts about power series

When u = —n is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary one:

<—n> _(=n)(=n—-1)---(=n—-r+1)
r r!
(=1)'n(n+1)---(n+r—1)
rl
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Generating Functions

Useful facts about power series

When u = —n is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary one:

<—n> _(=n)(=n—-1)---(=n—-r+1)
r r!
(=1)'n(n+1)---(n+r—1)
rl
(-D)'(n+r—1)(n+r—2)---n
rl
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Generating Functions

Useful facts about power series

When u = —n is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary one:

<—n> (=n)(=n—1)--(—n—r+1)

r r!
_ (_1)’”(”+1)-"(n+r_1)
rl
_ () (4 r=1)(n+r—=2)---n
r!
_(=D)(n+r-1)
rl(n—1)!
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Generating Functions

Useful facts about power series

When u = —n is a negative integer, the extended binomial
coefficient can be expressed in terms of an ordinary one:

<—n> (=n)(=n—1)--(—n—r+1)

r r!
_ (_1)’”(”+1)-"(n+r_1)
rl
_ () (4 r=1)(n+r—=2)---n
r!
_(=D)(n+r-1)
rl(n—1)!

:(_1),<n+:—1>
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Generating Functions

Useful facts about power series

Let x be a real number with x| < 1 and let u be a real number.

Then: _
1+x)=>" <Z>xk.
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Generating Functions

Useful facts about power series

Let x be a real number with x| < 1 and let u be a real number.

Then:
> u
(142 =3 ()t

Find the generating function for (1 + x)™" and (1 — x)~", where n
is a positive integer.
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Generating Functions

Useful facts about power series

Using the extended binomial theorem, we have

peare=3 ()
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Generating Functions

Useful facts about power series

Using the extended binomial theorem, we have
= /—n

(1+x) "= ; ( P >xk.

There is a nice expression for these coefficients:

o0
k—1
(1+x)" :Z < e )Xk.

=0
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Generating Functions

Useful facts about power series

Using the extended binomial theorem, we have
= /—n
(1+x) "= Z < P >xk.
k=0
There is a nice expression for these coefficients:
(o0}
k—1
(1+x)""= Z < n )Xk.
=0
Replacing x by —x, we also find that

(1—x)" = i (”“;_ 1)xk.

k=0
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Generating Functions

Useful facts about power series

Find the number of solutions of e; + e + e3 = 17, where €1, e,
and ez are nonnegative integers with 1 +/ < ¢ <4+ i.
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Generating Functions

Useful facts about power series

Example

Find the number of solutions of e; + e + e3 = 17, where €1, e,
and ez are nonnegative integers with 1 +/ < ¢ <4+ i.

The number of solutions with the indicated constraints is the
coefficient of x!7 in the expansion of

(2 4+ 3+ x* £ x5 3 + x4+ x5 + x5 (x* + x® 4+ x° + x7).
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Generating Functions

Useful facts about power series

Example
Find the number of solutions of e; + ey + e3 = 17, where €1, e,
and ez are nonnegative integers with 1 +/ < ¢ <4+ i.

The number of solutions with the indicated constraints is the
coefficient of x!7 in the expansion of
(2 4+ 3+ x* £ x5 3 + x4+ x5 + x5 (x* + x® 4+ x° + x7).

Explicit expansion shows this coefficient to be 3. (Note that
performing the expansion is about as much work as an explicit
enumeration of the solutions.)
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Generating Functions

Useful facts about power series

Example

Use generating functions to determine the number of ways to insert
tokes with $1, $2, and $5 into a vending machine to pay for an
item that costs r dollars in both the cases when the order in which
the tokens are inserted does not matter and when the order does
matter. (For example: there are two ways to pay for an item that
costs $3 when the order does not matter and three when it does.)

v
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Generating Functions

Useful facts about power series

Solution: Unordered

Because we can use any number of $1, $2, and $5 tokens, the
answer is the coefficient of x" in the generating function

A+x+x2+--)A+x2+x4+ )1+ +x1P0+..0).

For example, the number of ways to pay for an item costing $7 is
given by the coefficient of x’, which is 6.
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Generating Functions

Useful facts about power series

Solution: Ordered

The number of ways to insert exactly n tokens to produce a total
of r dollars is the coefficient of r in (x + x2 + x°)". Because any
number of tokens can be inserted, we are really interested in the
coefficient of x" in the sum

1
Tl (x+x24+x5)

T4+ (x+x2+ )+ (x+x2+x°)2 + -

The number of ways to pay for an item costing $7 is 26.
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Generating Functions

Using generating functions to solve recurrence relations

Solve the recurrence relation a, = 3a,_; and initial condition
ap = 2.
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Generating Functions

Using generating functions to solve recurrence relations

Example

Solve the recurrence relation a, = 3a,_; and initial condition
ap = 2.

Let G(x) be the associated generating function. Note that xG(x)
is the generating function for a shift of this sequence, and hence
the recurrence relation becomes

G(x) —3xG(x) = Z ax — 32 ag_1x"
k=0 k=1

0
= ap + Z(ak - 3ak_1)xk =2
k=1

Thus, G(x) — 3xG(x) = 2.
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Generating Functions

Using generating functions to solve recurrence relations

Example

Suppose that a valid codeword is an n-digit number in decimal
notation containing an even number of Os, and let a, denote the
number of valid codewords of length n. We've previously shown
this satisfies the recurrence a, = 8a,_1 + 10”1 with initial
condition a; = 9. Use generating functions to find an explicit
formula for aj,.
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Generating Functions

Using generating functions to solve recurrence relations

Solution

To make life simpler, we set ag = 1, which is consistent with our
recurrence. Multiplying the recurrence by x”, we get

a,x™ = 8a,_1x™ + 10""1x". Writing G(x) for the generating
function for a, and summing this equation over n, we find

o0

G(x)—1= Z(San_lx" + 10" 1x™)

n=1

o0 o
= 8x E ap_1x" 1+ x g pP—"ts—2
n=1 n=1

= 8xG(x) + x/(1 — 10x).
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Generating Functions

Using generating functions to solve recurrence relations

G(x) —1=8xG(x) +1/(1 — 10x).
Solving for G(x) gives

)= 1 9x 11
YT -8x)(1-10x) 2\1-8x 1-10x/"
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Generating Functions

Using generating functions to solve recurrence relations

G(x) —1=8xG(x) +1/(1 — 10x).
Solving for G(x) gives

)= 1 9x 11
YT -8x)(1-10x) 2\1-8x 1-10x/"

Expanding this last expression using series, we find

G(x) = % <§: 8"x" + i 1o"x"> _ i %(8" +107)x",
n=0

n=0 n=0

Consequently, a, = (8" + 10").
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Generating Functions

Proving identities via generating functions

Use generating functions to show that Y.} _, (2)2 = (*).

n
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Generating Functions

Proving identities via generating functions

Use generating functions to show that Y.} _, (2)2 = (*).

n

2n
n

First note that (
we also have

) is the coefficient of x” in (1 + x)?". However,

2

12 = (0 = 3 <?)Xf

j=0
The coefficient of x” in this expression is

GO +O6 )+ (6)-56)"
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Inclusion-Exclusion

8.5: Inclusion-Exclusion
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Inclusion-Exclusion

The principle of inclusion-exclusion

The number of elements in the union of the two sets A and B is
the sum of the numbers of elements in the sets minus the number
of elements in their intersection. That is,

|[AUB| = |Al+ |B| - |AN B|.
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Inclusion-Exclusion

The principle of inclusion-exclusion

Let A,..., A, be finite sets, and let A= A; U---UA,. Then

A= 1A= S AN A+ (D)™ AL N A,
i i<j
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Inclusion-Exclusion

The principle of inclusion-exclusion

Let A,..., A, be finite sets, and let A= A; U---UA,. Then

A= 1A= S AN A+ (D)™ AL N A,

i i<j

Proof
Suppose that a is a member of exactly r of the sets. Then a is
counted (]) times by the first sum, () times by the second sum

— and counted (,;) by the mt" sum. Thus, a is counted

(1)) ) e ()

times in all. Considering the expansion of (1 — 1), we see that the
above expression is equal to 1. Thus, each member of A is counted
exactly once by the right-hand sequence of sums, so it equals |A|.
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Inclusion-Exclusion

The principle of inclusion-exclusion

Give a formula for the number of elements in the union of four
arbitrary sets: Az, Az, Az, As.
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Inclusion-Exclusion

The principle of inclusion-exclusion

Give a formula for the number of elements in the union of four
arbitrary sets: Az, Az, Az, As.

|A1 U Ay U A3 U Ag| = |Ar] + |Az| + |As| + |Ad]
— |AL N Ag| — |AL N As| — |AL N Ay
— [A2 N Ag| — |Ax N Ag| — | A3 N Ayl
aF |A1ﬂA2ﬂA3’ aF |A1ﬂA2ﬂA4‘
aF |A1ﬂA3ﬂA4| aF |A2ﬂA3ﬂA4‘
= |A1 N AN Az ﬂA4|.
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